Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Ясиновый Э.А.

Фильтр
Сложность с по   Класс с по  
Выбрано 15 задач
Версия для печати
Убрать все задачи

Автор: Шатунов Л.

Дан многочлен степени $n \geqslant 1$ с целыми ненулевыми коэффициентами, каждый из которых является его корнем. Докажите, что модули коэффициентов этого многочлена не превосходят 2.

Вниз   Решение


Дима придумал секретный шифр: каждая буква заменяется на слово длиной не больше 10 букв. Шифр называется хорошим, если всякое зашифрованное слово расшифровывается однозначно. Серёжа убедился (с помощью компьютера), что если зашифровать слово длиной не больше 10000 букв, то результат расшифровывается однозначно. Следует ли из этого, что шифр хороший? (В алфавите 33 буквы, под "словом" мы понимаем любую последовательность букв, независимо от того, имеет ли она смысл.)

ВверхВниз   Решение


Три треугольника – белый, зелёный и красный – имеют общую внутреннюю точку M. Докажите, что можно выбрать по одной вершине из каждого треугольника так, чтобы точка M находилась внутри или на границе треугольника, образуемого выбранными вершинами.

ВверхВниз   Решение


Ширина реки один километр. Это по определению означает, что от любой точки каждого берега можно доплыть до противоположного берега, проплыв не больше километра. Может ли катер проплыть по реке так, чтобы в любой момент расстояние до любого из берегов было бы не больше:
  а) 700 м?
  б) 800 м?
(Берега состоят из отрезков и дуг окружностей.)

ВверхВниз   Решение


По кругу выписано несколько чисел. Если для некоторых четырёх идущих подряд чисел a, b, c, d произведение чисел  a – d  и  b – c  отрицательно, то числа b и c можно поменять местами. Докажите, что такие операции можно проделать лишь конечное число раз.

ВверхВниз   Решение


Каждые две из шести ЭВМ соединены своим проводом. Укажите, как раскрасить каждый из этих проводов в один из пяти цветов так, чтобы из каждой ЭВМ выходило пять проводов разного цвета.

ВверхВниз   Решение


С помощью циркуля и линейки постройте треугольник, если дана одна его вершина и три прямых, на которых лежат его биссектрисы.

ВверхВниз   Решение


Автор: Ким Л.В.

С помощью циркуля и линейки постройте на сторонах AB и BC треугольника ABC точки соответственно X и Y так, что AX = BY и XY || AC.

ВверхВниз   Решение


Незнайка не знает о существовании операций умножения и возведения в степень. Однако он хорошо освоил сложение, вычитание, деление и извлечение квадратного корня, а также умеет пользоваться скобками. Упражняясь, Незнайка выбрал три числа 20, 2 и 2 и составил выражение $\sqrt{(2+20):2}$. А может ли он, используя точно те же три числа 20, 2 и 2, составить выражение, значение которого больше 30?

ВверхВниз   Решение


В магазин завезли 20 кг сыра, за ним выстроилась очередь. Отпустив сыр очередному покупателю, продавщица безошибочно подсчитывает средний вес покупки по всему проданному сыру и сообщает, на сколько человек хватит оставшегося сыра, если все будут покупать именно по этому среднему весу. Могла ли продавщица после каждого из первых 10 покупателей сообщать, что сыра хватит ещё ровно на 10 человек? Если да, то сколько сыра осталось в магазине после первых 10 покупателей?

ВверхВниз   Решение


Автор: Федотов А.

Барон Мюнхгаузен утверждает, что ему удалось составить некоторый прямоугольник из нескольких подобных между собой непрямоугольных треугольников. Можно ли ему верить? (Среди подобных треугольников могут быть и равные.)

ВверхВниз   Решение


Изначально на доске написано натуральное число N. В любой момент Миша может выбрать число  a > 1  на доске, стереть его и дописать все натуральные делители a, кроме него самого (на доске могут появляться одинаковые числа). Через некоторое время оказалось, что на доске написано N² чисел. При каких N это могло случиться?

ВверхВниз   Решение


При каких n гири массами 1 г, 2 г, 3 г, ..., n г можно разложить на три равные по массе кучки?

ВверхВниз   Решение


На завтрак группа из 5 слонов и 7 бегемотов съела 11 круглых и 20 кубических арбузов, а группа из 8 слонов и 4 бегемотов – 20 круглых и 8 кубических арбузов. Все слоны съели поровну (одно и то же целое число) арбузов. И все бегемоты съели поровну арбузов. Но один вид животных ест и круглые, и кубические арбузы, а другой вид привередливый и ест арбузы только одной из форм. Определите, какой вид (слоны или бегемоты) привередлив и какие арбузы он предпочитает.

ВверхВниз   Решение


Через точку, взятую внутри произвольного треугольника, параллельно его сторонам проведены отрезки с концами на сторонах треугольника.
Докажите, что сумма трёх отношений этих отрезков к параллельным им сторонам треугольника равна 2.

Вверх   Решение

Все задачи автора

Страница: 1 [Всего задач: 3]      



Задача 53893

Тема:   [ Две пары подобных треугольников ]
Сложность: 3+
Классы: 8,9

Через точку, взятую внутри произвольного треугольника, параллельно его сторонам проведены отрезки с концами на сторонах треугольника.
Докажите, что сумма трёх отношений этих отрезков к параллельным им сторонам треугольника равна 2.

Прислать комментарий     Решение

Задача 73638

Темы:   [ Системы алгебраических нелинейных уравнений ]
[ Замена переменных ]
[ Методы решения задач с параметром ]
Сложность: 4-
Классы: 9,10,11

Исследуйте, сколько решений имеет система уравнений
    x² + y² + xy = a,
    x² – y² = b,
где а и b – некоторые данные действительные числа.

Прислать комментарий     Решение

Задача 73804

 [Числа Стирлинга]
Темы:   [ Рекуррентные соотношения (прочее) ]
[ Целочисленные и целозначные многочлены ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 5
Классы: 8,9,10,11

Обозначим через Tk(n) сумму произведений по k чисел от 1 до n. Например,    T2(4) = 1·2 + 1·3 + 1·4 + 2·3 + 2·4 + 3·4.
   а) Найдите формулы для T2(n) и T3(n).
   б) Докажите, что Tk(n) является многочленом от n степени 2k.
   в) Укажите метод нахождения многочленов Tk(n) при  k = 2, 3, 4, ...  и примените его для отыскания многочленов T4(n) и T5(n).

Прислать комментарий     Решение

Страница: 1 [Всего задач: 3]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .