ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Голованов А.С.

Александр Сергеевич Голованов - зам. директора Центра Математического образования Санкт-Петербурга, член жюри Всероссийской олимпиады школьников по математике.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 41]      



Задача 116953

Темы:   [ Разложение на множители ]
[ НОД и НОК. Взаимная простота ]
Сложность: 4-
Классы: 8,9,10

Найдите все такие натуральные k, что при каждом нечётном  n > 100  число  20n + 13n  делится на k.

Прислать комментарий     Решение

Задача 65740

Темы:   [ Уравнения в целых числах ]
[ Примеры и контрпримеры. Конструкции ]
[ Произведения и факториалы ]
Сложность: 4
Классы: 10,11

Натуральное число N представляется в виде  N = a1a2 = b1b2 = c1c2 = d1d2,  где a1 и a2 – квадраты, b1 и b2 – кубы, c1 и c2 – пятые степени, а d1 и d2 – седьмые степени натуральных чисел. Обязательно ли среди чисел a1, b1, c1 и d1 найдутся два равных?

Прислать комментарий     Решение

Задача 109605

Темы:   [ НОД и НОК. Взаимная простота ]
[ Делимость чисел. Общие свойства ]
[ Последовательности (прочее) ]
[ Доказательство от противного ]
Сложность: 4
Классы: 8,9,10

Последовательность натуральных чисел ai такова, что  НОД(ai, aj) = НОД(i, j)  для всех  i ≠ j.  Докажите, что  ai = i  для всех  iN.

Прислать комментарий     Решение

Задача 109842

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Индукция (прочее) ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4
Классы: 1,2

Последовательности положительных чисел (xn) и (yn) удовлетворяют условиям     при всех натуральных n. Докажите, что если все числа x1, x2, y1, y2 больше 1, то  xn > yn  при каком-нибудь натуральном n.

Прислать комментарий     Решение

Задача 110058

Темы:   [ Периодичность и непериодичность ]
[ Тригонометрические уравнения ]
Сложность: 4
Классы: 10,11

Дана последовательность {xk} такая, что x1=1 , xn+1=n sin xn+1 . Докажите, что последовательность непериодична.
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 41]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .