ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Дан треугольник площади 1 со сторонами
a Внутри выпуклого n-угольника
A1A2...An взята
точка O так, что
Приведите пример девятизначного натурального числа, которое делится на 2, если зачеркнуть вторую (слева) цифру, на 3 — если зачеркнуть в исходном числе третью цифру, ..., делится на 9, если в исходном числе зачеркнуть девятую цифру. Квадрат 10×10 клеток надо покрыть полосками 1×9 клеток. Сделайте это так, чтобы каждая клетка была покрыта одной или двумя полосками, но никакой прямоугольник 1×2 не был покрыт в два слоя. (Полоски кладут по линиям сетки горизонтально или вертикально, полоски не должны выходить за границу квадрата.) Найдите трехзначное число, которое представимо в виде суммы и двух, и трех, и четырех, и пяти, и шести квадратов различных натуральных чисел. Достаточно привести один пример. Известно, что в кадр фотоаппарата, расположенного в точке O, не могут попасть предметы A и B такие, что угол AOB больше 179o. На плоскости поставлено 1000 таких фотоаппаратов. Одновременно каждым фотоаппаратом делают по одному снимку. Доказать, что найдётся снимок, на котором сфотографировано не больше 998 фотоаппаратов. а) Найдите сумму всех трёхзначных чисел, которые можно записать с помощью цифр 1, 2, 3, 4 (цифры могут повторяться). Существует ли треугольник, в котором одна сторона равна какой-то из его высот, другая – какой-то из биссектрис, а третья – какой-то из медиан? Окружность S1 вписана в угол A треугольника ABC. Из вершины C к ней проведена касательная (отличная от CA), и в образовавшийся треугольник с вершиной B вписана окружность
S2. Из вершины A к S2 проведена касательная, и в образовавшийся треугольник с вершиной C вписана окружность
S3 Карта Квадрландии представляет собой квадрат 6×6 клеток. Каждая клетка – либо королевство, либо спорная территория. Королевств всего 27, а спорных территорий 9. На спорную территорию претендуют все королевства по соседству и только они (то есть клетки, соседние со спорной по стороне или вершине). Может ли быть, что на каждые две спорные территории претендует разное число королевств? Биссектриса и высота, проведённые из одной вершины некоторого треугольника, делят его противоположную сторону на три отрезка. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 145]
На доске записано натуральное число. Если у него стереть последнюю цифру (в разряде единиц), то останется ненулевое число, которое будет делиться на 20, а если первую — то на 21. Какое наименьшее число может быть записано на доске, если его вторая цифра не равна 0?
В остроугольном треугольнике ABC точка O – центр описанной окружности. Точка B1 симметрична точке B относительно стороны AC. Прямые AO и B1C пересекаются в точке K. Докажите, что луч KA является биссектрисой угла BKB1.
Приведите пример девятизначного натурального числа, которое делится на 2, если зачеркнуть вторую (слева) цифру, на 3 — если зачеркнуть в исходном числе третью цифру, ..., делится на 9, если в исходном числе зачеркнуть девятую цифру.
Пусть f(x)=x2+3x+2. Вычислите (1−2f(1))(1−2f(2))(1−2f(3))…(1−2f(2019)).
На конференции присутствовали представители двух конкурирующих фирм “Индекс” и “Зугл” Алексей, Борис и Владимир. Представители одной и той же компании всегда говорят правду друг другу и врут конкурентам. Алексей сказал Борису: «Я из фирмы “Индекс”». Борис ответил: «О! Вы с Владимиром работаете в одной фирме!». Можно ли по этому диалогу определить, где работает Владимир?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 145]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке