Страница:
<< 18 19 20 21
22 23 24 >> [Всего задач: 156]
|
|
|
Сложность: 4- Классы: 8,9,10,11
|
Назовём девятизначное число красивым, если все его цифры различны.
Докажите, что существует по крайней мере а) 1000; б) 2018 красивых чисел, каждое из которых делится на 37.
|
|
|
Сложность: 4- Классы: 8,9,10,11
|
Ортогональной проекцией тетраэдра на плоскость одной из его граней является трапеция площади 1.
а) Может ли ортогональной проекцией этого тетраэдра на плоскость другой его грани быть квадрат площади 1?
б) А квадрат площади 1/2019?
|
|
|
Сложность: 4- Классы: 10,11
|
На доске написана функция sin $x$ + cos $x$. Разрешается написать на доске производную любой написанной ранее функции, а также сумму и произведение любых двух написанных ранее функций, так можно делать много раз. В какой-то момент на доске оказалась функция, равная для всех действительных $x$ некоторой константе $c$. Чему может равняться $c$?
|
|
|
Сложность: 4- Классы: 10,11
|
Даны две треугольные пирамиды с общим основанием $ABC$. Их вершины $S$ и $R$
лежат по разные стороны от плоскости $ABC$. Все боковые рёбра одной пирамиды параллельны соответствующим боковым граням другой. Докажите, что объём одной пирамиды вдвое больше объёма другой.
Вписанная окружность треугольника ABC (AB > BC)
касается сторон AB и AC в точках P и Q
соответственно, RS – средняя линия, параллельная стороне AB, T – точка пересечения прямых PQ и RS. Докажите, что точка T лежит на биссектрисе угла B треугольника ABC.
Страница:
<< 18 19 20 21
22 23 24 >> [Всего задач: 156]