ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Евдокимов М.А.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 156]      



Задача 66715

Темы:   [ Теория чисел. Делимость (прочее) ]
[ Десятичная запись числа ]
Сложность: 4-
Классы: 8,9,10,11

Назовём девятизначное число красивым, если все его цифры различны.
Докажите, что существует по крайней мере  а) 1000;  б) 2018 красивых чисел, каждое из которых делится на 37.

Прислать комментарий     Решение

Задача 66756

Темы:   [ Площадь и ортогональная проекция ]
[ Тетраэдр (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9,10,11

Ортогональной проекцией тетраэдра на плоскость одной из его граней является трапеция площади 1.
  а) Может ли ортогональной проекцией этого тетраэдра на плоскость другой его грани быть квадрат площади 1?
  б) А квадрат площади 1/2019?

Прислать комментарий     Решение

Задача 67078

Темы:   [ Производная (прочее) ]
[ Тригонометрия (прочее) ]
[ Инварианты ]
Сложность: 4-
Классы: 10,11

На доске написана функция  sin $x$ + cos $x$.  Разрешается написать на доске производную любой написанной ранее функции, а также сумму и произведение любых двух написанных ранее функций, так можно делать много раз. В какой-то момент на доске оказалась функция, равная для всех действительных $x$ некоторой константе $c$. Чему может равняться $c$?

Прислать комментарий     Решение

Задача 67461

Темы:   [ Параллельность прямых и плоскостей ]
[ Объем тетраэдра и пирамиды ]
[ Гомотетия помогает решить задачу ]
Сложность: 4-
Классы: 10,11

Даны две треугольные пирамиды с общим основанием $ABC$. Их вершины $S$ и $R$ лежат по разные стороны от плоскости $ABC$. Все боковые рёбра одной пирамиды параллельны соответствующим боковым граням другой. Докажите, что объём одной пирамиды вдвое больше объёма другой.
Прислать комментарий     Решение


Задача 108152

Темы:   [ Средняя линия треугольника ]
[ Две касательные, проведенные из одной точки ]
[ Вписанные и описанные окружности ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Биссектриса угла ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Три прямые, пересекающиеся в одной точке ]
Сложность: 4-
Классы: 8,9

Вписанная окружность треугольника ABC  (AB > BC)  касается сторон AB и AC в точках P и Q соответственно, RS – средняя линия, параллельная стороне AB, T – точка пересечения прямых PQ и RS. Докажите, что точка T лежит на биссектрисе угла B треугольника ABC.

Прислать комментарий     Решение

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 156]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .