ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() Лев Александрович Емельянов - старший преподаватель Калужского государственного педагогического университета им. К.Э. Циолковского (КГПУ), член жюри Всероссийской олимпиады школьников по математике. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Сумма кубов трёх последовательных натуральных чисел оказалась кубом натурального числа. Докажите, что среднее из этих трёх чисел делится на 4. В выражении (x4 + x³ – 3x² + x + 2)2006 раскрыли скобки и привели подобные слагаемые.
Существуют ли действительные числа a , b и c такие, что при
всех действительных x и y выполняется неравенство
На вертикальную ось надели несколько колес со спицами. Вид сверху
изображен на левом рисунке.
После этого колеса повернули. Новый вид сверху изображен на рисунке справа. Могло ли колес быть: а) три; б) два? Плоская выпуклая фигура ограничена отрезками AB и AD и дугой BD некоторой окружности (рис.1). Постройте какую-нибудь прямую, которая делит пополам: а) периметр этой фигуры; б) её площадь. Квадрат разрезали на несколько частей. Переложив эти части, из них всех сложили треугольник. Затем к этим частям добавили еще одну фигурку – и оказалось, что и из нового набора фигурок можно сложить как квадрат, так и треугольник. Покажите, как такое могло бы произойти (нарисуйте, как именно эти два квадрата и два треугольника могли бы быть составлены из фигурок). Сфера с центром в плоскости основания ABC тетраэдра SABC проходит через вершины A , B и C и вторично пересекает ребра SA , SB и SC в точках A1 , B1 и C1 соответственно. Плоскости, касающиеся сферы в точках A1 , B1 и C1 , пересекаются в точке O . Докажите, что O – центр сферы, описанной около тетраэдра SA1B1C1 . |
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 90]
Пусть A' – точка касания вневписанной окружности треугольника ABC со стороной BC. Прямая a проходит через точку A' и параллельна биссектрисе внутреннего угла A. Аналогично строятся прямые b и c. Докажите, что прямые a, b и c пересекаются в одной точке.
Пусть A', B' и C' – точки касания вневписанных окружностей с соответствующими сторонами треугольника ABC. Описанные окружности треугольников A'B'C, AB'C' и A'BC' пересекают второй раз описанную окружность треугольника ABC в точках C1, A1 и B1 соответственно. Докажите, что треугольник A1B1C1 подобен треугольнику, образованному точками касания вписанной окружности треугольника с его сторонами.
Четырёхугольник ABCD является одновременно и вписанным, и описанным, причём вписанная в ABCD окружность касается его сторон AB, BC, CD и AD в точках K, L, M, N соответственно. Биссектрисы внешних углов A и B четырёхугольника пересекаются в точке K', внешних углов B и C – в точке L', внешних углов C и D – в точке M', внешних углов D и A – в точке N'. Докажите, что прямые KK', LL', MM' и NN' проходят через одну точку.
Докажите, что сумма двух нагелиан больше полупериметра треугольника.
Сфера с центром в плоскости основания ABC тетраэдра SABC проходит через вершины A , B и C и вторично пересекает ребра SA , SB и SC в точках A1 , B1 и C1 соответственно. Плоскости, касающиеся сферы в точках A1 , B1 и C1 , пересекаются в точке O . Докажите, что O – центр сферы, описанной около тетраэдра SA1B1C1 .
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 90]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке