ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
Докажите, что у четырёхугольника, вписанного в окружность, суммы противоположных углов равны 180o.
Найдите углы четырёхугольника ABCD, вершины которого расположены на окружности, если ∠ABD = 74°, ∠DBC = 38°, ∠BDC = 65°.
Можно ли описать окружность около четырёхугольника, углы которого по порядку относятся как: а) 2:4:5:3; б) 5:7:8:9?
Три последовательных угла вписанного четырёхугольника относятся как 1:2:3. Найдите все углы четырёхугольника.
Биллиард имеет форму выпуклого четырехугольника ABCD. Из точки K стороны AB выпустили биллиардный шар, который отразился в точках L, M, N от сторон BC, CD, DA, возвратился в точку K и вновь вышел на траекторию KLMN. Докажите, что четырехугольник ABCD можно вписать в окружность. Докажите, что произведение любых трёх последовательных натуральных чисел делится на 6. На затонувшей каравелле XIV века были найдены шесть мешков с золотыми монетами. В первых четырёх мешках оказалось по 60, 30, 20 и 15 золотых монет. Когда подсчитали монеты в оставшихся двух, кто-то заметил, что число монет в мешках составляет некую последовательность. Приняв это к сведению, смогли бы вы сказать, сколько монет в пятом и шестом мешках? a, b, c, d – положительные числа. Докажите, что по крайней мере одно из неравенств На сторонах AB и AC треугольника ABC выбрали точки P и Q так, что PB = QC. Докажите, что PQ < BC. Что больше: 1234567·1234569 или 1234568²? Если к числу 100 применить 99 раз операцию "факториал", то получится число A. Если к числу 99 применить 100 раз операцию "факториал", то получится число B. Какое из этих двух чисел больше? Дан выпуклый четырёхугольник ABCD. Известно, что ∠ABD + ∠ACD > ∠BAC + ∠BDC. Докажите, что SABD + SACD > SBAC + SBDC. Дан треугольник ABC. M – середина стороны BC, а P – проекция вершины B на серединный перпендикуляр к AC. Прямая PM пересекает сторону AB в точке Q. Докажите, что треугольник QPB равнобедренный. Как вы думаете, среди четырёх последовательных натуральных чисел будет ли хотя бы одно делиться а) на 2? б) на 3? в) на 4? г) на 5? Сумма n положительных чисел x1, x2, x3, ..., xn равна 1. Даны две единичные окружности ω1 и ω2, пересекающиеся в точках A и B. На окружности ω1 взяли произвольную точку M, а на окружности ω2 точку N. Через точки M и N провели ещё две единичные окружности ω3 и ω4. Обозначим повторное пересечение ω1 и ω3 через C, повторное пересечение окружностей ω2 и ω4 – через D. Докажите, что ACBD – параллелограмм. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 51]
Дан выпуклый шестиугольник ABCDEF. Известно, что ∠FAE = ∠BDC, а четырёхугольники ABDF и ACDE являются вписанными.
Дан треугольник ABC. M – середина стороны BC, а P – проекция вершины B на серединный перпендикуляр к AC. Прямая PM пересекает сторону AB в точке Q. Докажите, что треугольник QPB равнобедренный.
Дан выпуклый четырёхугольник ABCD. Известно, что ∠ABD + ∠ACD > ∠BAC + ∠BDC. Докажите, что SABD + SACD > SBAC + SBDC.
Даны две единичные окружности ω1 и ω2, пересекающиеся в точках A и B. На окружности ω1 взяли произвольную точку M, а на окружности ω2 точку N. Через точки M и N провели ещё две единичные окружности ω3 и ω4. Обозначим повторное пересечение ω1 и ω3 через C, повторное пересечение окружностей ω2 и ω4 – через D. Докажите, что ACBD – параллелограмм.
На сторонах AB и AC треугольника ABC выбрали точки P и Q так, что PB = QC. Докажите, что PQ < BC.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 51]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке