ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На числовой оси отмечено бесконечно много точек с натуральными координатами. Когда по оси катится колесо, каждая отмеченная точка, по которой проехало колесо, оставляет на нём точечный след. Докажите, что можно выбрать такое действительное $R$, что если прокатить по оси, начиная из нуля, колесо радиуса $R$, то на каждой дуге колеса величиной в $1^\circ$ будет след хотя бы одной отмеченной точки. Найдите все такие натуральные n, что при некоторых взаимно простых x и y и натуральном k > 1, выполняется равенство 3n = xk + yk. Грани выпуклого многогранника – подобные треугольники. На доске написано n выражений вида *x² + *x + * = 0 (n – нечетное число). Двое играют в такую игру. Ходят по очереди. За ход разрешается заменить одну из звёздочек числом, не равным нулю. Через 3n ходов получится n квадратных уравнений. Первый игрок стремится к тому, чтобы как можно большее число этих уравнений не имело корней, а второй хочет ему помешать. Какое наибольшее число уравнений, не имеющих корней, может получить первый игрок независимо от игры второго? На прямоугольном столе разложено несколько одинаковых квадратных листов бумаги так, что их стороны параллельны краям стола (листы могут перекрываться). Докажите, что можно воткнуть несколько булавок таким образом, что каждый лист будет прикреплен к столу ровно одной булавкой. Посреди пустого бассейна стоит квадратная платформа 50 × 50 сантиметров, расчерченная на клеточки 10× 10 см. На клетки платформы Лена ставит башенки из кубиков 10× 10× 10 см. Потом Таня включает воду. Если высоты башенок были такие, как в таблице справа, то при уровне воды 5 см был 1 остров, при уровне воды 15 см было два острова (если острова «граничат по углу», то считаются отдельными островами), а при уровне воды 25 см все башенки оказались закрыты водой и стало 0 островов. Придумайте, какие башенки из кубиков можно поставить, чтобы количество островов было следующим:
В ответе напишите в каждой клетке квадрата 5 на 5, сколько кубиков на ней стоит. В семейном альбоме есть десять фотографий. На каждой из них изображены три человека: в центре стоит мужчина, слева от мужчины – его сын, а справа – его брат. Какое наименьшее количество различных людей может быть изображено на этих фотографиях, если известно, что все десять мужчин, стоящих в центре, различны? |
Страница: << 1 2 3 [Всего задач: 15]
Для каких n существует такая замкнутая несамопересекающаяся ломаная из n звеньев, что каждая прямая, содержащая одно из звеньев этой ломаной, содержит ещё хотя бы одно её звено?
В пространстве даны 200 точек. Каждые две из них соединены отрезком, причём отрезки не пересекаются друг с другом. Первый игрок красит каждый отрезок в один из k цветов, затем второй игрок красит в один из тех же цветов каждую точку. Если найдутся две точки и отрезок между ними, окрашенные в один цвет, выигрывает первый игрок, в противном случае второй. Докажите, что первый может гарантировать себе выигрыш, если
В семейном альбоме есть десять фотографий. На каждой из них изображены три человека: в центре стоит мужчина, слева от мужчины – его сын, а справа – его брат. Какое наименьшее количество различных людей может быть изображено на этих фотографиях, если известно, что все десять мужчин, стоящих в центре, различны?
а) Существует ли последовательность натуральных чисел a1, a2, a3, ..., обладающая следующим свойством: ни один член последовательности не равен сумме нескольких других и an ≤ n10 при любом n? б) Тот же вопрос, если an ≤ n
Дан квадрат со
Страница: << 1 2 3 [Всего задач: 15]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке