Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Маркелов Ю.

Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Можно ли разрезать по границам клеток фигуру на рисунке на 4 одинаковые части?

Вниз   Решение


Автор: Бона М.

В футбольном турнире в один круг участвовало 28 команд. По окончании турнира оказалось, что более ¾ всех игр закончилось вничью.
Докажите, что какие-то две команды набрали поровну очков.

ВверхВниз   Решение


Положительные числа a, b, c таковы, что  a² + b² – ab = c².  Докажите, что (a – c)(b – c) ≤ 0.

ВверхВниз   Решение


В треугольнике ABC провели высоты AX и BZ, а также биссектрисы AY и BT. Известно, что углы XAY и ZBT равны. Обязательно ли треугольник ABC равнобедренный?

ВверхВниз   Решение


Автор: Матвеев А.

Дан отрезок AB. Точки X,Y,Z в пространстве выбираются так, чтобы ABX был правильным треугольником, а ABYZ – квадратом.
Докажите, что ортоцентры всех получающихся таким образом треугольников XYZ попадают на некоторую фиксированную окружность.

ВверхВниз   Решение


Автор: Матвеев А.

Дан выпуклый четырёхугольник ABCD. Точки X и Y лежат на продолжениях за точку D сторон CD и AD соответственно, причем DX=AB и DY=BC. Аналогично, точки Z и T лежат на продолжениях за точку B сторон CB и AB, причем BZ=AD и BT=DC. Пусть M1 – середина XY, M2 – середина ZT. Докажите, что прямые DM1, BM2 и AC пересекаются в одной точке.

ВверхВниз   Решение


Автор: Власова Н.

По кругу стоят n мальчиков и n девочек. Назовём пару из мальчика и девочки хорошей, если на одной из дуг между ними стоит поровну мальчиков и девочек (в частности, стоящие рядом мальчик и девочка образуют хорошую пару). Оказалось, что есть девочка, которая участвует ровно в 10 хороших парах. Докажите, что есть и мальчик, который участвует ровно в 10 хороших парах.

ВверхВниз   Решение


а) Доказать, что для любых положительных чисел  x1, x2, ..., xk  (k > 3)  выполняется неравенство:

б) Доказать, что это неравенство ни для какого  k > 3  нельзя усилить, то есть доказать, что для каждого фиксированного k нельзя заменить двойку в правой части на большее число так, чтобы полученное неравенство было справедливо для любого набора из k положительных чисел.

ВверхВниз   Решение


Юра записал четырёхзначное число. Лёня прибавил к первой цифре этого числа 1, ко второй 2, к третьей 3 и к четвёртой 4, а потом перемножил полученные суммы. У Лёни получилось 234. Какое число могло быть записано Юрой?

ВверхВниз   Решение


Охотник рассказал приятелю, что видел в лесу волка с метровым хвостом. Тот рассказал другому приятелю, что в лесу видели волка с двухметровым хвостом. Передавая новость дальше, простые люди увеличивали длину хвоста вдвое, а творческие – втрое. В результате по телевизору сообщили о волке с хвостом длиной 864 метра. Сколько простых и сколько творческих людей "отрастили" волку хвост?

ВверхВниз   Решение


100 ребятам положили в тарелки по 100 макаронин. Есть ребята не хотели и стали играть. Одним действием кто-то из детей перекладывает из своей тарелки по одной макаронине некоторым (кому хочет) из остальных. После какого наименьшего количества действий у всех в тарелках может оказаться разное количество макаронин?

ВверхВниз   Решение


Про натуральные числа x, y и z известно, что НОД(x,y,z)=1 и x2+y2+z2=2(xy+yz+zx). Докажите, что x, y и z – квадраты натуральных чисел.

Вверх   Решение

Все задачи автора

Страница: 1 [Всего задач: 5]      



Задача 67003

Темы:   [ НОД и НОК. Взаимная простота ]
[ Формулы сокращенного умножения (прочее) ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3+
Классы: 10,11

Про натуральные числа x, y и z известно, что НОД(x,y,z)=1 и x2+y2+z2=2(xy+yz+zx). Докажите, что x, y и z – квадраты натуральных чисел.
Прислать комментарий     Решение


Задача 66110

Темы:   [ Невыпуклые многоугольники ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9,10

Можно ли нарисовать на клетчатой бумаге многоугольник и поделить его на две равные части разрезом такой формы, как показано на рисунке
  а) слева;  б) в центре;  в) справа?

(Во всех пунктах разрез лежит внутри многоугольника, на границу выходят только концы разреза. Стороны многоугольника и звенья разреза идут по линиям сетки, маленькие звенья в два раза короче больших.)

Прислать комментарий     Решение

Задача 66384

Темы:   [ Разрезания (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 7,8,9

Фигурки из четырёх клеток называются тет- рамино. Они бывают пяти видов (см. рис.). Существует ли такая фигура, что при любом выборе вида тетрамино эту фигуру можно составить, используя тетраминошки только выбранного вида? (Переворачивать тетраминошки можно.)

Прислать комментарий     Решение

Задача 66528

Тема:   [ Разные задачи на разрезания ]
Сложность: 4
Классы: 7,8,9

Можно ли данную фигуру («верблюда») разбить
а) по линиям сетки;
б) не обязательно по линиям сетки
на 3 части, из которых можно сложить квадрат?

Прислать комментарий     Решение


Задача 66831

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Тождественные преобразования ]
Сложность: 4
Классы: 8,9,10,11

Назовём пару  (m,n)  различных натуральных чисел m и n хорошей, если mn и  (m+1)(n+1)  – точные квадраты. Докажите, что для каждого натурального m существует хотя бы одно такое  n>m,  что пара  (m,n)  хорошая.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .