Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Хилько Д.

Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

  а) Квадрат разбит на прямоугольники. Цепочкой называется такое подмножество K множества этих прямоугольников, что существует сторона S квадрата, целиком закрытая проекциями прямоугольников из K, но при этом ни в какую точку S не проектируются внутренние точки двух прямоугольников из K (мы относим к прямоугольнику и его стороны). Доказать, что любые два прямоугольника разбиения входят в некоторую цепочку.

  б) Аналогичная задача для куба, разбитого на прямоугольные параллелепипеды (в определении цепочки нужно заменить сторону на ребро).

Вниз   Решение


Дан треугольник ABC и прямая l, пересекающая прямые BC, AC, AB в точках La, Lb, Lc. Перпендикуляр, восставленный из точки La к BC, пересекает AB и AC в точках Ab и Ac соответственно. Точка Oa – центр описанной окружности треугольника AAbAc. Аналогично определим Ob и Oc. Докажите, что Oa, Ob и Oc лежат на одной прямой.

ВверхВниз   Решение


Последовательность  x0, x1, x2, ...  определена следующими условиями:  x0 = 1,  x1 = λ,  для любого  n > 1  выполнено равенство

(α + β)nxn = αnxnx0 + αn–1βxn–1x1 + αn–2β2xn–2x2 + ... + βnx0xn.
Здесь α, β, λ – заданные положительные числа. Найдите xn и выясните, при каком n величина xn наибольшая.

ВверхВниз   Решение


На стороне AB квадрата ABCD взята точка E, а на стороне CD – точка F, причём  AE : EB = 1 : 2,  а  CF = FD.
Будут ли голубой и зелёный треугольники (см. рис.) подобны?

ВверхВниз   Решение


Назовём квартетом четвёрку клеток на клетчатой бумаге, центры которых лежат в вершинах прямоугольника со сторонами, параллельными линиям сетки. (Например, на рисунке нарисованы три квартета.) Какое наибольшее число квартетов можно разместить в
  а) квадрате 5×5;
  б) прямоугольнике m×n клеток?

ВверхВниз   Решение


Дан вписанный четырехугольник $ABCD$. Пусть $E=AC\cap BD$, $F=AD\cap BC$. Биссектрисы углов $AFB$ и $AEB$ пересекают $CD$ в точках $X, Y$. Докажите, что точки $A, B, X, Y$ лежат на одной окружности.

ВверхВниз   Решение


Разделим каждую сторону выпуклого четырёхугольника ABCD на три равные части и соединим отрезками соответствующие точки на противоположных сторонах (см. рис.). Докажите, что площадь "среднего" четырёхугольника в 9 раз меньше площади четырёхугольника ABCD.

ВверхВниз   Решение


Пусть A', B', C', D', E', F' – середины сторон AB, BC, CD, DE, EF, FA произвольного выпуклого шестиугольника ABCDEF. Известны площади треугольников ABC', BCD', CDE', DEF', EFA', FAB'. Найдите площадь шестиугольника ABCDEF.

ВверхВниз   Решение


Автор: Хилько Д.

На стороне BC треугольника ABC взята произвольная точка D. Через D и A проведены окружности ω1 и ω2 так, что прямая BA касается ω1, прямая CA касается ω2. BX – вторая касательная, проведённая из точки B к окружности ω1, CY – вторая касательная, проведённая из точки C к окружности ω2. Докажите, что описанная окружность треугольника XDY касается прямой BC.

Вверх   Решение

Все задачи автора

Страница: 1 [Всего задач: 4]      



Задача 67101

Темы:   [ Вспомогательные подобные треугольники ]
[ Четыре точки, лежащие на одной окружности ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 3
Классы: 8,9,10,11

Дан вписанный четырехугольник $ABCD$. Пусть $E=AC\cap BD$, $F=AD\cap BC$. Биссектрисы углов $AFB$ и $AEB$ пересекают $CD$ в точках $X, Y$. Докажите, что точки $A, B, X, Y$ лежат на одной окружности.
Прислать комментарий     Решение


Задача 66656

Темы:   [ Ортоцентр и ортотреугольник ]
[ Средняя линия треугольника ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Вспомогательные подобные треугольники ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 3+
Классы: 9,10,11

Автор: Хилько Д.

В остроугольном треугольнике $ABC$ проведены высоты $AH_1, BH_2, CH_3$, которые пересекаются в ортоцентре $H$. Точки $P$ и $Q$ симметричны $H_2$ и $H_3$ относительно $H$. Описанная окружность треугольника $PH_1Q$ пересекает во второй раз высоты $BH_2$ и $CH_3$ в точках $R$ и $S$. Докажите, что $RS$ – средняя линия треугольника $ABC$.
Прислать комментарий     Решение


Задача 66240

Темы:   [ Ортоцентр и ортотреугольник ]
[ Средняя линия треугольника ]
[ Три точки, лежащие на одной прямой ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Медиана, проведенная к гипотенузе ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
[ Отношения линейных элементов подобных треугольников ]
Сложность: 4-
Классы: 9,10

В треугольнике ABC проведены высоты AH1, BH2 и CH3. Точка M – середина отрезка H2H3. Прямая AM пересекает отрезок H2H1 в точке K.
Докажите, что точка K принадлежит средней линии треугольника ABC, параллельной AC.

Прислать комментарий     Решение

Задача 65805

Темы:   [ Вписанные и описанные окружности ]
[ Инверсия помогает решить задачу ]
[ Радикальная ось ]
[ Средняя линия треугольника ]
Сложность: 4+
Классы: 9,10

Автор: Хилько Д.

На стороне BC треугольника ABC взята произвольная точка D. Через D и A проведены окружности ω1 и ω2 так, что прямая BA касается ω1, прямая CA касается ω2. BX – вторая касательная, проведённая из точки B к окружности ω1, CY – вторая касательная, проведённая из точки C к окружности ω2. Докажите, что описанная окружность треугольника XDY касается прямой BC.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .