Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Митькин Д.

Фильтр
Сложность с по   Класс с по  
Выбрано 27 задач
Версия для печати
Убрать все задачи

Автор: Козлов П.

Целые числа a, b, c таковы, что значения квадратных трёхчленов  bx² + cx + a  и  cx² + ax + b  при  x = 1234  совпадают.
Может ли первый трёхчлен при  x = 1  принимать значение 2009?

Вниз   Решение


Автор: Замков В.

Витя выложил из карточек с цифрами пример на сложение и затем поменял местами две карточки. Как видите, равенство нарушилось. Какие карточки переставил Витя?

ВверхВниз   Решение


Автор: Козлов П.

Число N, не делящееся на 81, представимо в виде суммы квадратов трёх целых чисел, делящихся на 3.
Докажите, что оно также представимо в виде суммы квадратов трёх целых чисел, не делящихся на 3.

ВверхВниз   Решение


Автор: Замков В.

Натуральное число n назовём хорошим, если каждое из чисел n,   n + 1,  n + 2  и  n + 3  делится на сумму своих цифр. (Например,  n = 60398  – хорошее.)
Обязательно ли предпоследней цифрой хорошего числа, оканчивающегося восьмеркой, будет девятка?

ВверхВниз   Решение


Инопланетянин со звезды Тау Кита, прилетев на Землю в понедельник, воскликнул: ''А!''. Во вторник он воскликнул: ''АУ!'', в среду — ''АУУА!'', в четверг — ''АУУАУААУ!''. Что он воскликнет в субботу?

ВверхВниз   Решение


В распоряжении юного паркетчика имеется 10 одинаковых плиток, каждая из которых состоит из 4 квадратов и имеет форму буквы Г (все плитки ориентированы одинаково). Может ли он составить из них прямоугольник размером 5×8? (Плитки можно поворачивать, но нельзя переворачивать. Например, на рисунке изображено неверное решение: заштрихованная плитка неправильно ориентирована.)

ВверхВниз   Решение


Прямоугольник разрезан на несколько прямоугольников, периметр каждого из которых – целое число метров.
Верно ли, что периметр исходного прямоугольника – тоже целое число метров?

ВверхВниз   Решение


За два года завод снизил объём выпускаемой продукции на 51%. При этом каждый год объём выпускаемой продукции снижался на одно и то же число процентов. На сколько?

ВверхВниз   Решение


Автор: Шноль Д.Э.

Дима увидел в музее странные часы (см. рисунок). Они отличаются от обычных часов тем, что на их циферблате нет цифр и вообще непонятно, где у часов верх; да ещё секундная, минутная и часовая стрелки имеют одинаковую длину. Какое время показывали часы?
(Стрелки А и Б на рисунке смотрят ровно на часовые отметки, а стрелка В чуть-чуть не дошла до часовой отметки.)

ВверхВниз   Решение


а) Внутри окружности находится некоторая точка A. Через A провели две перпендикулярные прямые, которые пересекли окружность в четырёх точках.
Докажите, что центр масс этих точек не зависит от выбора таких двух прямых.

б) Внутри окружности находится правильный 2n-угольник  (n > 2),  его центр A не обязательно совпадает с центром окружности. Лучи, выпущенные из A в вершины 2n-угольника, высекают 2n точек на окружности. 2n-угольник повернули так, что его центр остался на месте. Теперь лучи высекают 2n новых точек. Докажите, что их центр масс совпадает с центром масс старых 2n точек.

ВверхВниз   Решение


У Юры есть калькулятор, который позволяет умножать число на 3, прибавлять к числу 3 или (если число делится на 3 нацело) делить на 3. Как на этом калькуляторе получить из числа 1 число 11?

ВверхВниз   Решение


Автор: Шноль Д.Э.

Kаждый из двух подобных треугольников разрезали на два треугольника так, что одна из получившихся частей одного треугольника подобна одной из частей другого треугольника. Bерно ли, что оставшиеся части также подобны?

ВверхВниз   Решение


Каких пятизначных чисел больше: не делящихся на 5 или тех, у которых ни первая, ни вторая цифра слева – не пятёрка?

ВверхВниз   Решение


Расставьте скобки и знаки арифметических действий так, чтобы получилось верное равенство:  

ВверхВниз   Решение


Автор: Шноль Д.Э.

Покажите, как разрезать квадрат размером 5×5 клеток на "уголки" шириной в одну клетку так, чтобы все "уголки" состояли из разного количества клеток. (Длины "сторон" уголка могут быть как одинаковыми, так и различными.)

ВверхВниз   Решение


На параболе  y = x²  выбраны четыре точки A, B, C, D так, что прямые AB и CD пересекаются на оси ординат.
Найдите абсциссу точки D, если абсциссы точек A, B и C равны a, b и c соответственно.

ВверхВниз   Решение


Для постройки типового дома не хватало места. Архитектор изменил проект: убрал два подъезда и добавил три этажа. При этом количество квартир увеличилось. Он обрадовался и решил убрать ещё два подъезда и добавить ещё три этажа.
Могло ли при этом квартир стать даже меньше, чем в типовом проекте? (В каждом подъезде одинаковое число этажей и на всех этажах во всех подъездах одинаковое число квартир.)

ВверхВниз   Решение


Кролик, готовясь к приходу гостей, повесил в трёх углах своей многоугольной норы по лампочке. Пришедшие к нему Винни-Пух и Пятачок увидели, что не все горшочки с мёдом освещены. Когда они полезли за мёдом, две лампочки разбились. Кролик перевесил оставшуюся лампочку в некоторый угол так, что вся нора оказалась освещена. Могло ли такое быть? (Если да, нарисуйте пример, если нет, обоснуйте ответ.)

ВверхВниз   Решение


На сторонах единичного квадрата отметили точки K, L, M и N так, что прямая KM параллельна двум сторонам квадрата, а прямая LN – двум другим сторонам квадрата. Отрезок KL отсекает от квадрата треугольник периметра 1. Треугольник какой площади отсекает от квадрата отрезок MN?

ВверхВниз   Решение


Дан квадратный лист бумаги со стороной 1. Отмерьте на этом листе расстояние ⅚ (лист можно сгибать, в том числе, по любому отрезку с концами на краях бумаги и разгибать обратно; после разгибания на бумаге остаётся след от линии сгиба).

ВверхВниз   Решение


a) Придумайте три правильные несократимые дроби, сумма которых – целое число, а если каждую из этих дробей "перевернуть" (то есть заменить на обратную), то сумма полученных дробей тоже будет целым числом.
б) То же, но числители дробей – не равные друг другу натуральные числа.

ВверхВниз   Решение


Каких прямоугольников с целыми сторонами больше: с периметром 1996 или с периметром 1998?
(Прямоугольники a×b и b×a считаются одинаковыми.)

ВверхВниз   Решение


Автор: Шноль Д.Э.

Найдите все решения ребуса  Я + ОН + ОН + ОН + ОН + ОН + ОН + ОН + ОН = МЫ.
(Одинаковыми буквами зашифрованы одинаковые цифры, разными разные.)

ВверхВниз   Решение


Разрежьте изображённую на рисунке доску на четыре одинаковые части, чтобы каждая из них содержала три заштрихованные клетки.

ВверхВниз   Решение


Автор: Лифшиц Ю.

Дан треугольник ABC с попарно различными сторонами. На его сторонах построены внешним образом правильные треугольники ABC1, BCA1 и CAB1. Докажите, что треугольник A1B1C1 не может быть правильным.

ВверхВниз   Решение


Автор: Лифшиц Ю.

Шестнадцать футбольных команд из шестнадцати стран провели турнир – каждая команда сыграла с каждой из остальных по одному матчу.
Могло ли оказаться так, что каждая команда сыграла во всех странах, кроме своей родины?

ВверхВниз   Решение


Автор: Митькин Д.

Найдите все четверки действительных чисел, в каждой из которых любое число равно произведению каких-либо двух других чисел.

Вверх   Решение

Все задачи автора

Страница: 1 [Всего задач: 2]      



Задача 109511

Темы:   [ Упорядочивание по возрастанию (убыванию) ]
[ Перебор случаев ]
Сложность: 4-
Классы: 7,8,9

Автор: Митькин Д.

Найдите все четверки действительных чисел, в каждой из которых любое число равно произведению каких-либо двух других чисел.
Прислать комментарий     Решение


Задача 109515

Темы:   [ Целочисленные треугольники ]
[ Простые числа и их свойства ]
[ Формула Герона ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 8,9,10

Автор: Митькин Д.

Длины сторон треугольника – простые числа. Докажите, что его площадь не может быть целым числом.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 2]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .