Страница:
<< 1 2 3 4 5 6
7 >> [Всего задач: 33]
|
|
Сложность: 4+ Классы: 8,9,10,11
|
На острове живут
100
рыцарей и
100
лжецов, у каждого из них есть хотя бы один друг. Рыцари всегда говорят правду, а лжецы всегда лгут. Однажды утром каждый житель произнес либо фразу "Все мои друзья – рыцари", либо фразу "Все мои друзья – лжецы", причем каждую из фраз произнесло ровно
100
человек. Найдите наименьшее возможное число пар друзей, один из которых рыцарь, а другой – лжец.
На некоторых клетках доски 10×10 сидит по блохе. Раз в минуту блохи одновременно прыгают, причём каждая – в соседнюю клетку (по стороне). Блоха прыгает строго в одном из четырёх направлений, параллельных сторонам доски, сохраняет направление, пока это возможно, иначе меняет его на противоположное. Пес Барбос наблюдал за блохами в течение часа и ни разу не видел, чтобы две
из них сидели на одной клетке. Какое наибольшее количество блох могло прыгать по доске?
|
|
Сложность: 4+ Классы: 8,9,10,11
|
На плоскости отмечено несколько точек, каждая покрашена в синий,
желтый или зеленый цвет. На любом отрезке, соединяющем одноцветные точки,
нет точек этого же цвета, но есть хотя бы одна другого цвета.
Каково максимально возможное число всех точек?
|
|
Сложность: 4+ Классы: 10,11
|
Назовем многогранник хорошим, если его
объем (измеренный в
м3 ) численно равен площади его поверхности
(измеренной в
м2 ).
Можно ли какой-нибудь
хороший тетраэдр разместить внутри какого-нибудь хорошего
параллелепипеда?
|
|
Сложность: 5- Классы: 8,9,10
|
Последовательности
(
an)
и
(
bn)
заданы условиями
a1=1
,
b1=2
,
an+1
= и
bn+1
= . Докажите, что
a2008
<5
.
Страница:
<< 1 2 3 4 5 6
7 >> [Всего задач: 33]