Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Мостовой А.

Фильтр
Сложность с по   Класс с по  
Выбрано 19 задач
Версия для печати
Убрать все задачи

Можно ли разрезать по границам клеток фигуру на рисунке на 4 одинаковые части?

Вниз   Решение


Автор: Бона М.

В футбольном турнире в один круг участвовало 28 команд. По окончании турнира оказалось, что более ¾ всех игр закончилось вничью.
Докажите, что какие-то две команды набрали поровну очков.

ВверхВниз   Решение


Положительные числа a, b, c таковы, что  a² + b² – ab = c².  Докажите, что (a – c)(b – c) ≤ 0.

ВверхВниз   Решение


В треугольнике $ABC$ провели высоты $AX$ и $BZ$, а также биссектрисы $AY$ и $BT$. Известно, что углы $XAY$ и $ZBT$ равны. Обязательно ли треугольник $ABC$ равнобедренный?

ВверхВниз   Решение


Автор: Матвеев А.

Дан отрезок $AB$. Точки $X, Y, Z$ в пространстве выбираются так, чтобы $ABX$ был правильным треугольником, а $ABYZ$ – квадратом.
Докажите, что ортоцентры всех получающихся таким образом треугольников $XYZ$ попадают на некоторую фиксированную окружность.

ВверхВниз   Решение


Автор: Матвеев А.

Дан выпуклый четырёхугольник $ABCD$. Точки $X$ и $Y$ лежат на продолжениях за точку $D$ сторон $CD$ и $AD$ соответственно, причем $DX=AB$ и $DY=BC$. Аналогично, точки $Z$ и $T$ лежат на продолжениях за точку $B$ сторон $CB$ и $AB$, причем $BZ=AD$ и $BT=DC$. Пусть $M_1$ – середина $XY$, $M_2$ – середина $ZT$. Докажите, что прямые $DM_1$, $BM_2$ и $AC$ пересекаются в одной точке.

ВверхВниз   Решение


Автор: Власова Н.

По кругу стоят n мальчиков и n девочек. Назовём пару из мальчика и девочки хорошей, если на одной из дуг между ними стоит поровну мальчиков и девочек (в частности, стоящие рядом мальчик и девочка образуют хорошую пару). Оказалось, что есть девочка, которая участвует ровно в 10 хороших парах. Докажите, что есть и мальчик, который участвует ровно в 10 хороших парах.

ВверхВниз   Решение


а) Доказать, что для любых положительных чисел  x1, x2, ..., xk  (k > 3)  выполняется неравенство:

б) Доказать, что это неравенство ни для какого  k > 3  нельзя усилить, то есть доказать, что для каждого фиксированного k нельзя заменить двойку в правой части на большее число так, чтобы полученное неравенство было справедливо для любого набора из k положительных чисел.

ВверхВниз   Решение


Юра записал четырёхзначное число. Лёня прибавил к первой цифре этого числа 1, ко второй 2, к третьей 3 и к четвёртой 4, а потом перемножил полученные суммы. У Лёни получилось 234. Какое число могло быть записано Юрой?

ВверхВниз   Решение


Охотник рассказал приятелю, что видел в лесу волка с метровым хвостом. Тот рассказал другому приятелю, что в лесу видели волка с двухметровым хвостом. Передавая новость дальше, простые люди увеличивали длину хвоста вдвое, а творческие – втрое. В результате по телевизору сообщили о волке с хвостом длиной 864 метра. Сколько простых и сколько творческих людей "отрастили" волку хвост?

ВверхВниз   Решение


100 ребятам положили в тарелки по 100 макаронин. Есть ребята не хотели и стали играть. Одним действием кто-то из детей перекладывает из своей тарелки по одной макаронине некоторым (кому хочет) из остальных. После какого наименьшего количества действий у всех в тарелках может оказаться разное количество макаронин?

ВверхВниз   Решение


Про натуральные числа $x$, $y$ и $z$ известно, что $\operatorname{НОД}(x,y,z) = 1$ и $x^2+y^2+z^2=2(xy+yz+zx)$. Докажите, что $x$, $y$ и $z$ – квадраты натуральных чисел.

ВверхВниз   Решение


Можно ли нарисовать на клетчатой бумаге многоугольник и поделить его на две равные части разрезом такой формы, как показано на рисунке
  а) слева;  б) в центре;  в) справа?

(Во всех пунктах разрез лежит внутри многоугольника, на границу выходят только концы разреза. Стороны многоугольника и звенья разреза идут по линиям сетки, маленькие звенья в два раза короче больших.)

ВверхВниз   Решение


Можно ли данную фигуру («верблюда») разбить
а) по линиям сетки;
б) не обязательно по линиям сетки
на 3 части, из которых можно сложить квадрат?

ВверхВниз   Решение


Назовём пару  ($m, n$)  различных натуральных чисел $m$ и n хорошей, если $mn$ и  $(m + 1)(n + 1)$  – точные квадраты. Докажите, что для каждого натурального $m$ существует хотя бы одно такое  $n > m$,  что пара  ($m, n$)  хорошая.

ВверхВниз   Решение


Фигурки из четырёх клеток называются тет- рамино. Они бывают пяти видов (см. рис.). Существует ли такая фигура, что при любом выборе вида тетрамино эту фигуру можно составить, используя тетраминошки только выбранного вида? (Переворачивать тетраминошки можно.)

ВверхВниз   Решение


На столе лежат 8 всевозможных горизонтальных полосок $1\times3$ из трёх квадратиков $1\times1$, каждый из которых либо белый, либо серый (см. рисунок). Разрешается переносить полоски в любых направлениях на любые (не обязательно целые) расстояния, не поворачивая и не переворачивая. Можно ли расположить полоски на столе так, чтобы все белые точки образовали многоугольник, ограниченный замкнутой несамопересекающейся ломаной, и все серые – тоже? (Полоски не должны перекрываться.)

ВверхВниз   Решение


Предложенные вам четыре одинаковые фигуры (рис. слева) требуется уложить в шестиугольник (рис. справа) так, чтобы они не выступали за его границы и не накладывались друг на друга (даже частично).

ВверхВниз   Решение


В остроугольном треугольнике $ABC$ ($AC>AB$ ) провели биссектрису $AK$ и медиану $AT$, последнюю продлили до пересечения с описанной окружностью треугольника в точке $D$. Точка $F$ симметрична $K$ относительно $T$. Даны углы треугольника $ABC$, найдите угол $FDA$.

Вверх   Решение

Все задачи автора

Страница: 1 [Всего задач: 1]      



Задача 66814

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Четыре точки, лежащие на одной окружности ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 9,10,11

В остроугольном треугольнике $ABC$ ($AC>AB$ ) провели биссектрису $AK$ и медиану $AT$, последнюю продлили до пересечения с описанной окружностью треугольника в точке $D$. Точка $F$ симметрична $K$ относительно $T$. Даны углы треугольника $ABC$, найдите угол $FDA$.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .