Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Сендеров В.А.

Валерий Анатольевич Сендеров (1945 - 2014 гг.) - математик, педагог, с 70-х годов - постоянный участник проведения московских и российских математических олимпиад. Автор нескольких десятков научных статей в отечественных и зарубежных изданиях, научно-популярных работ в журнале Квант.

Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Докажите, что произведение всех целых чисел от  21917 + 1  до  21991 – 1  включительно не есть квадрат целого числа.

Вниз   Решение


Решите уравнение  3x + 5y = 7  в целых числах.

ВверхВниз   Решение


Целые числа a, x1, x2, ..., x13 таковы, что  a = (1 + x1)(1 + x2)...(1 + x13) = (1 – x1)(1 – x2)...(1 – x13).  Докажите, что  ax1x2...x13 = 0.

ВверхВниз   Решение


На окружности взяты точки  A, C1, B, A1, C, B1 в указанном порядке.
а) Докажите, что если прямые AA1, BB1 и CC1 являются биссектрисами углов треугольника ABC, то они являются высотами треугольника A1B1C1.
б) Докажите, что если прямые AA1, BB1 и CC1 являются высотами треугольника ABC, то они являются биссектрисами углов треугольника A1B1C1.

ВверхВниз   Решение


Докажите, что число 40...09 – не полный квадрат (при любом числе нулей, начиная с 1).

ВверхВниз   Решение


а) Вписанная окружность треугольника ABC касается стороны AC в точке D, DM — ее диаметр. Прямая BM пересекает сторону AC в точке K. Докажите, что AK = DC.
б) В окружности проведены перпендикулярные диаметры AB и CD. Из точки M, лежащей вне окружности, проведены касательные к окружности, пересекающие прямую AB в точках E и H, а также прямые MC и MD, пересекающие прямую AB в точках F и K. Докажите, что EF = KH.

ВверхВниз   Решение


В прямоугольнике проведена ломаная, соседние звенья которой перпендикулярны и равны меньшей стороне прямоугольника (см. рис).
Найдите отношение сторон прямоугольника.

ВверхВниз   Решение


Незнайка не знает о существовании операций умножения и возведения в степень. Однако он хорошо освоил сложение, вычитание, деление и извлечение квадратного корня, а также умеет пользоваться скобками. Упражняясь, Незнайка выбрал три числа 20, 2 и 2 и составил выражение $\sqrt{(2+20):2}$. А может ли он, используя точно те же три числа 20, 2 и 2, составить выражение, значение которого больше 30?

ВверхВниз   Решение


На кошачьей выставке каждый посетитель погладил ровно трех кошек. При этом оказалось, что каждую кошку погладили ровно три посетителя.

Докажите, что посетителей было ровно столько же, сколько кошек.

ВверхВниз   Решение


Существует ли такое натуральное n, что для любых ненулевых цифр a и b число  anb  делится на  ab ?  (Через  x...y  обозначено число, получаемое приписыванием друг к другу десятичных записей чисел x, ..., y.)

ВверхВниз   Решение


Докажите, что число вида a0...09 – не полный квадрат (при любом числе нулей, начиная с одного; a – цифра, отличная от 0).

 

Вверх   Решение

Все задачи автора

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 90]      



Задача 98263

Темы:   [ Десятичная система счисления ]
[ Разложение на множители ]
[ НОД и НОК. Взаимная простота ]
[ Числовые неравенства. Сравнения чисел. ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 8,9

Докажите, что число вида a0...09 – не полный квадрат (при любом числе нулей, начиная с одного; a – цифра, отличная от 0).

 
Прислать комментарий     Решение

Задача 98282

Темы:   [ Простые числа и их свойства ]
[ Арифметика остатков (прочее) ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 6,7,8

а) Существуют ли четыре таких различных натуральных числа, что сумма каждых трёх из них есть простое число?
б) Существуют ли пять таких различных натуральных чисел, что сумма каждых трёх из них есть простое число?

Прислать комментарий     Решение

Задача 98445

Темы:   [ Уравнения в целых числах ]
[ Четность и нечетность ]
[ Признаки делимости на 3 и 9 ]
[ Разложение на множители ]
Сложность: 3+
Классы: 8,9

Рассматриваются тройки целых чисел a, b и c, для которых выполнено условие:  a + b + c = 0.  Для каждой такой тройки вычисляется число
d = a1999 + b1999 + c1999.   Может ли случиться, что
  а)  d = 2?
  б) d – простое число?

Прислать комментарий     Решение

Задача 98450

Темы:   [ Разложение на множители ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 10,11

Докажите, что существует бесконечно много нечётных n, для которых число  2n + n  – составное.

Прислать комментарий     Решение

Задача 98497

Темы:   [ НОД и НОК. Взаимная простота ]
[ Делимость чисел. Общие свойства ]
[ Перебор случаев ]
Сложность: 3+
Классы: 8,9,10,11

Натуральные числа a, b, c, d таковы, что наименьшее общее кратное этих чисел равно  a + b + c + d.
Докажите, что abcd делится на 3 или на 5 (или на то и другое).

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 90]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .