Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Сендеров В.А.

Валерий Анатольевич Сендеров (1945 - 2014 гг.) - математик, педагог, с 70-х годов - постоянный участник проведения московских и российских математических олимпиад. Автор нескольких десятков научных статей в отечественных и зарубежных изданиях, научно-популярных работ в журнале Квант.

Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

В некотором лесу расстояние между каждыми двумя деревьями не превосходит разности их высот. Все деревья имеют высоту меньше 100 м.
Докажите, что этот лес можно огородить забором длиной 200 м.

Вниз   Решение


Можно ли на плоскости расположить 1000 отрезков так, чтобы каждый отрезок обоими концами упирался строго внутрь других отрезков?

ВверхВниз   Решение


Две окружности касаются в точке A. К ним проведена общая (внешняя) касательная, касающаяся окружностей в точках C и B. Докажите, что  $ \angle$CAB = 90o.

ВверхВниз   Решение


В равностороннем (неправильном) пятиугольнике ABCDE угол ABC вдвое больше угла DBE. Найдите величину угла ABC.

ВверхВниз   Решение


Докажите, что:
а)  ma2 = (2b2 + 2c2 - a2)/4;
б)  ma2 + mb2 + mc2 = 3(a2 + b2 + c2)/4.

ВверхВниз   Решение


Автор: Фольклор

Докажите, что существует бесконечно много простых чисел.

ВверхВниз   Решение


Докажите тождество: 1 + 3 + 5 +...+ (2n – 1) = n2.

ВверхВниз   Решение


Докажите, что замкнутую ломаную длины 1 можно поместить в круг радиуса 0, 25.

ВверхВниз   Решение


Может ли бильярдный шар, отразившись поочередно от двух соседних сторон прямоугольного бильярдного стола, прийти в исходную точку?

ВверхВниз   Решение


У Насти есть пять одинаковых с виду монет, среди которых три настоящие – весят одинаково – и две фальшивые: одна тяжелее настоящей, а вторая на столько же легче настоящей. Эксперт по просьбе Насти сделает на двухчашечных весах без гирь три взвешивания, которые она укажет, после чего сообщит Насте результаты. Может ли Настя выбрать взвешивания так, чтобы по их результатам гарантированно определить обе фальшивые монеты и указать, какая из них более тяжёлая, а какая более лёгкая?

ВверхВниз   Решение


При каких натуральных  n > 1  найдутся такие различные натуральные числа a1, a2, ..., an, что сумма   a1/a2 + a2/a3 + an/a1   – целое число?

ВверхВниз   Решение


Окружности S1 и S2 пересекаются в точках A и B. Через точку A проведена касательная AQ к окружности S1 (точка Q лежит на S2), а через точку B -- касательная BS к окружности S2 (точка S лежит на S1). Прямые BQ и AS пересекают окружности S1 и S2 в точках R и P. Докажите, что PQRS — параллелограмм.

ВверхВниз   Решение


Натуральные числа a, b, c, d таковы, что наименьшее общее кратное этих чисел равно  a + b + c + d.
Докажите, что abcd делится на 3 или на 5 (или на то и другое).

Вверх   Решение

Все задачи автора

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 90]      



Задача 98263

Темы:   [ Десятичная система счисления ]
[ Разложение на множители ]
[ НОД и НОК. Взаимная простота ]
[ Числовые неравенства. Сравнения чисел. ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 8,9

Докажите, что число вида a0...09 – не полный квадрат (при любом числе нулей, начиная с одного; a – цифра, отличная от 0).

 
Прислать комментарий     Решение

Задача 98282

Темы:   [ Простые числа и их свойства ]
[ Арифметика остатков (прочее) ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 6,7,8

а) Существуют ли четыре таких различных натуральных числа, что сумма каждых трёх из них есть простое число?
б) Существуют ли пять таких различных натуральных чисел, что сумма каждых трёх из них есть простое число?

Прислать комментарий     Решение

Задача 98445

Темы:   [ Уравнения в целых числах ]
[ Четность и нечетность ]
[ Признаки делимости на 3 и 9 ]
[ Разложение на множители ]
Сложность: 3+
Классы: 8,9

Рассматриваются тройки целых чисел a, b и c, для которых выполнено условие:  a + b + c = 0.  Для каждой такой тройки вычисляется число
d = a1999 + b1999 + c1999.   Может ли случиться, что
  а)  d = 2?
  б) d – простое число?

Прислать комментарий     Решение

Задача 98450

Темы:   [ Разложение на множители ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 10,11

Докажите, что существует бесконечно много нечётных n, для которых число  2n + n  – составное.

Прислать комментарий     Решение

Задача 98497

Темы:   [ НОД и НОК. Взаимная простота ]
[ Делимость чисел. Общие свойства ]
[ Перебор случаев ]
Сложность: 3+
Классы: 8,9,10,11

Натуральные числа a, b, c, d таковы, что наименьшее общее кратное этих чисел равно  a + b + c + d.
Докажите, что abcd делится на 3 или на 5 (или на то и другое).

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 90]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .