ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

В волейбольном турнире участвовали 110 команд, каждая сыграла с каждой из остальных ровно одну игру (в волейболе не бывает ничьих). Оказалось, что в любой группе из 55 команд найдётся одна, которая проиграла не более чем четырём из остальных 54 команд этой группы. Докажите, что во всём турнире найдётся команда, проигравшая не более чем четырём из остальных 109 команд.

Вниз   Решение


Имеется набор из двух карточек: и . За одну операцию разрешается составить выражение, использующее числа на карточках, арифметические действия, скобки. Если его значение – целое неотрицательное число, то его выдают на новой карточке. (Например, имея карточки , и , можно составить выражение   :   и получить карточку или составить выражение и получить карточку .)
Как получить карточку с числом 2015  а) за 4 операции;  б) за 3 операции?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 38]      



Задача 98416

Тема:   [ НОД и НОК. Взаимная простота ]
Сложность: 3
Классы: 8,9

Пусть a, b, c – натуральные числа.
а) Докажите, что если  НОК(a, a + 5) = HOK(b, b + 5),  то  a = b.
б) Могут ли  НОК(a, b)  и  НОК(а + с, b + с)  быть равны?

Прислать комментарий     Решение

Задача 98426

Темы:   [ Принцип Дирихле (углы и длины) ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3
Классы: 6,7,8


Квадрат разрезали 18 прямыми, из которых девять параллельны одной стороне квадрата, а девять – другой, на 100 прямоугольников. Оказалось, что ровно девять из них – квадраты. Докажите, что среди этих квадратов найдутся два равных между собой.

Прислать комментарий     Решение

Задача 98427

Темы:   [ Периодичность и непериодичность ]
[ Линейные рекуррентные соотношения ]
Сложность: 3
Классы: 7,8,9

В ряд стоят 1999 чисел. Первое число равно 1. Известно, что каждое число, кроме первого и последнего, равно сумме двух соседних.
Найдите последнее число.

Прислать комментарий     Решение

Задача 98430

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Замощения костями домино и плитками ]
Сложность: 3
Классы: 6,7,8

Автор: Фольклор

На плоскости нарисован чёрный квадрат. Имеется семь квадратных плиток того же размера. Нужно положить их на плоскость так, чтобы они не перекрывались и чтобы каждая плитка покрывала хотя бы часть чёрного квадрата (хотя бы одну точку внутри него). Как это сделать?

Прислать комментарий     Решение

Задача 105050

Темы:   [ Деление с остатком ]
[ Теория алгоритмов (прочее) ]
[ Оценка + пример ]
Сложность: 3
Классы: 6,7,8

Петин счет в банке содержит 500 долларов. Банк разрешает совершать операции только двух видов: снимать 300 долларов или добавлять 198 долларов.
Какую максимальную сумму Петя может снять со счета, если других денег у него нет?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 38]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .