ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Докажите, что произвольный треугольник можно разрезать на три многоугольника, один из которых должен быть тупоугольным треугольником, так, чтобы потом сложить из них прямоугольник. (Переворачивать части можно).

Вниз   Решение


В параллелограмме ABCD опустили перпендикуляр BH на сторону AD. На отрезке BH отметили точку M, равноудалённую от точек C и D. Пусть точка K – середина стороны AB. Докажите, что угол MKD прямой.

ВверхВниз   Решение


Автор: Фольклор

Найдите все неотрицательные решения системы уравнений:
    x³ = 2y² – z,
    y³ = 2z² – x,
    z³ = 2x² – y.

Вверх   Решение

Задачи

Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 173]      



Задача 60594  (#03.142)

Темы:   [ Рекуррентные соотношения (прочее) ]
[ НОД и НОК. Взаимная простота ]
[ Уравнения в целых числах ]
Сложность: 4
Классы: 9,10,11

Пусть a1, a2, ... – такая последовательность ненулевых чисел, что  (am, an) = a(m, n)  (m, n ≥ 1).

Докажите, что все обобщенные биномиальные коэффициенты     являются целыми числами.

Прислать комментарий     Решение

Задача 60595  (#03.143)

Тема:   [ Цепные (непрерывные) дроби ]
Сложность: 2+
Классы: 8,9,10,11

Разложите в цепные дроби числа 147/13 и 129/111.

Прислать комментарий     Решение

Задача 60596  (#03.144)

Темы:   [ Цепные (непрерывные) дроби ]
[ Числа Фибоначчи ]
Сложность: 3
Классы: 8,9,10,11

Пусть     Чему равны Pn и Qn?

Прислать комментарий     Решение

Задача 60597  (#03.145)

Темы:   [ Цепные (непрерывные) дроби ]
[ Алгоритм Евклида ]
Сложность: 3
Классы: 8,9,10,11

Как связано разложение рационального числа в цепную дробь с алгоритмом Евклида?

Прислать комментарий     Решение

Задача 60598  (#03.146)

 [Геометрическая интерпретация алгоритма Евклида]
Темы:   [ Цепные (непрерывные) дроби ]
[ Разрезания на параллелограммы ]
Сложность: 3
Классы: 8,9,10,11

Работу алгоритма Евклида (см. задачу 60488) можно представить следующим образом. В прямоугольник размерами  m0×m1  (m1m0)  укладываем a0 квадратов размера   m1×m1,  в оставшийся прямоугольник размерами  m1×m2  (m2m1)  укладываем a1 квадратов размера  m2×m2,  и т. д. до тех пор, пока весь прямоугольник не покроется квадратами. Выразите общее число квадратов через элементы цепной дроби числа  m0/m1.

Прислать комментарий     Решение

Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 173]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .