ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Натуральный ряд представлен в виде объединения некоторого множества попарно непересекающихся целочисленных бесконечных арифметических прогрессий с положительными разностями  d1, d2, d3, ... .  Может ли случиться, что при этом сумма   1/d1 + 1/d2 + ... + 1/dk   не превышает 0,9? Рассмотрите случаи:
  а) общее число прогрессий конечно;
  б) прогрессий бесконечное число (в этом случае условие нужно понимать в том смысле, что сумма любого конечного числа слагаемых из бесконечной суммы не превышает 0,9).

Вниз   Решение


В ряд записаны 20 различных натуральных чисел. Произведение каждых двух из них, стоящих подряд, является квадратом натурального числа. Первое число равно 42. Докажите, что хотя бы одно из чисел больше чем 16000.

ВверхВниз   Решение


Трапеция ABCD и параллелограмм MBDK расположены так, что стороны параллелограмма параллельны диагоналям трапеции (см. рис.). Докажите, что площадь серой части равна сумме площадей черных частей.

ВверхВниз   Решение


Углы треугольника ABC связаны соотношением  3α + 2β = 180°. Докажите, что  a² + bc = c².

ВверхВниз   Решение


На столе лежит картонный круг радиуса 5 см. Петя, пока возможно, прикладывает к кругу снаружи картонные квадраты со стороной 5 см так, чтобы выполнялись условия:
  1) у каждого квадрата одна вершина лежит на границе круга;
  2) квадраты не пересекаются;
  3) каждый следующий квадрат касается предыдущего вершиной к вершине.
Определите, сколько квадратов может выложить Петя, и докажите, что последний и первый квадрат тоже коснутся вершинами.

Вверх   Решение

Задачи

Страница: << 176 177 178 179 180 181 182 >> [Всего задач: 6702]      



Задача 86899

Темы:   [ Линейные зависимости векторов ]
[ Векторы (прочее) ]
Сложность: 3
Классы: 8,9

Сторона основания правильной треугольной пирамиды равна a , боковое ребро образует с плоскостью основания угол 45o . Найдите радиус вписанной сферы.
Прислать комментарий     Решение


Задача 86900

Темы:   [ Линейные зависимости векторов ]
[ Векторное произведение ]
Сложность: 3
Классы: 8,9

Сторона основания правильной четырёхугольной пирамиды равна a , боковая грань образует с плоскостью основания угол 60o . Найдите радиус описанной сферы.
Прислать комментарий     Решение


Задача 86901

Темы:   [ Линейные зависимости векторов ]
[ Векторы (прочее) ]
Сложность: 3
Классы: 8,9

Сторона основания правильной четырёхугольной пирамиды равна a , боковая грань образует с плоскостью основания угол 60o . Найдите радиус вписанной сферы.
Прислать комментарий     Решение


Задача 86903

Темы:   [ Линейные зависимости векторов ]
[ Векторное произведение ]
Сложность: 3
Классы: 8,9

Сторона основания правильной треугольной пирамиды равна a , а расстояние между противоположными рёбрами равно . Найдите радиус описанной сферы.
Прислать комментарий     Решение


Задача 86904

Темы:   [ Линейные зависимости векторов ]
[ Векторы (прочее) ]
Сложность: 3
Классы: 8,9

Сторона основания правильной треугольной пирамиды равна a , а расстояние между противоположными рёбрами равно . Найдите радиус вписанной сферы.
Прислать комментарий     Решение


Страница: << 176 177 178 179 180 181 182 >> [Всего задач: 6702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .