Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выпуски:
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Старинный замок был обнесён треугольной стеной. Каждая сторона стены была поделена на три равные части, и в этих точках, а также в вершинах были построены башни. Всего вдоль стены было 9 башен: A, E, F, B, K, L, C, M, N. Со временем все стены и башни, кроме башен E, K, M, разрушились. Как по оставшимся башням определить, где находились башни A, B, C, если известно, что башни A, B, C стояли в вершинах?

Вниз   Решение


Середины E и F параллельных сторон BC и AD параллелограмма ABCD соединены с вершинами D и B соответственно.
Докажите, что прямые BF и ED делят диагональ AC на три равные части.

ВверхВниз   Решение


Однажды осенью Рассеянный Учёный глянул на свои старинные настенные часы и увидел, что на циферблате уснули три мухи. Первая спала в точности на отметке 12 часов, а две другие так же аккуратно расположились на отметках 2 часа и 5 часов. Учёный произвёл измерения и определил, что часовая стрелка мухам не грозит, а вот минутная сметёт их всех по очереди. Найдите вероятность того, что ровно через 40 минут после того, как Учёный заметил мух, ровно две мухи из трёх были сметены минутной стрелкой.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 50]      



Задача 73716  (#М181)

Темы:   [ Остовы многогранных фигур ]
[ Обходы многогранников ]
[ Обход графов ]
[ Степень вершины ]
[ Перестройки ]
Сложность: 4-
Классы: 10,11

Какую наименьшую длину должен иметь кусок проволоки, чтобы из него можно было согнуть каркас куба с ребром 10 см?
(Проволока может проходить по одному ребру дважды, загибаться на 90° и 180°, но ломать её нельзя.)

Прислать комментарий     Решение

Задача 73717  (#М182)

Темы:   [ Неравенство Коши ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Докажите, что если
  а) a, b и c – положительные числа, то  

  б) a, b, c и d – положительные числа,  

  в) a1, ..., an – положительные числа  (n > 1),  то  

Прислать комментарий     Решение

Задача 55350  (#М183)

Темы:   [ Перенос стороны, диагонали и т.п. ]
[ Теорема косинусов ]
[ Теорема Пифагора (прямая и обратная) ]
[ Взаимоотношения между сторонами и углами треугольников (прочее) ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 4
Классы: 8,9

Найдите высоту трапеции, у которой основания равны a и b (a < b), угол между диагоналями равен 90o, а угол между продолжениями боковых сторон равен 45o.

Прислать комментарий     Решение


Задача 73719  (#М184)

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Треугольник Паскаля и бином Ньютона ]
[ Рациональные функции (прочее) ]
Сложность: 4-
Классы: 9,10,11

Докажите, что для любого натурального числа n  

Прислать комментарий     Решение

Задача 73720  (#М185)

Темы:   [ Формула включения-исключения ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 4-
Классы: 7,8,9

На кафтане площадью 1 размещены 5 заплат, площадь каждой из которых не меньше 1/2. Докажите, что найдутся две заплаты, площадь общей части которых не меньше 1/5.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 50]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .