ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 5]      



Задача 78507  (#1)

Темы:   [ Принцип крайнего (прочее) ]
[ Уравнения в целых числах ]
[ Доказательство от противного ]
Сложность: 3
Классы: 10,11

Доказать, что не существует попарно различных натуральных чисел x, y, z, t, для которых было бы справедливо соотношение  xx + yy = zz + tt.

Прислать комментарий     Решение

Задача 78508  (#2)

Темы:   [ Принцип Дирихле (прочее) ]
[ Десятичная система счисления ]
Сложность: 3+
Классы: 9,10,11

Доказать, что из одиннадцати произвольных бесконечных десятичных дробей можно выбрать две дроби, разность которых имеет в десятичной записи либо бесконечное число нулей, либо бесконечное число девяток.
Прислать комментарий     Решение


Задача 78509  (#3)

Тема:   [ Теорема Безу. Разложение на множители ]
Сложность: 4-
Классы: 8,9,10

Найти все многочлены P(x), для которых справедливо тождество:  xP(x – 1) ≡ (x – 26)P(x).

Прислать комментарий     Решение

Задача 78505  (#4)

Темы:   [ Средняя линия треугольника ]
[ Пятиугольники ]
[ Площадь. Одна фигура лежит внутри другой ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Отношение площадей подобных треугольников ]
[ Неравенства с площадями ]
Сложность: 5-
Классы: 8,9,10

A', B', C', D', E' — середины сторон выпуклого пятиугольника ABCDE. Доказать, что площади пятиугольников ABCDE и A'B'C'D'E' связаны соотношением:

SA'B'C'D'E'$\displaystyle \ge$$\displaystyle {\textstyle\frac{1}{2}}$SABCDE.

Прислать комментарий     Решение

Задача 78510  (#5)

Темы:   [ Окружности на сфере ]
[ Неравенства с трехгранными углами ]
[ Принцип Дирихле (углы и длины) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 5
Классы: 10,11

Доказать, что на сфере нельзя так расположить три дуги больших окружностей в 300o каждая, чтобы никакие две из них не имели ни общих точек, ни общих концов.

Примечание: Большая окружность – это окружность, полученная в сечении сферы плоскостью, проходящей через ее центр.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .