ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
Треугольник ABC вписан в
окружность с центром в O . X "– произвольная точка внутри
треугольника ABC , такая, что Можно ли в таблице 6×6 расставить числа 0, 1 и -1 так, чтобы все суммы по вертикалям, горизонталям и двум диагоналям были различны? Таня стоит на берегу речки. У неё есть два глиняных кувшина: один — на 5 литров, а про второй Таня помнит лишь то, что он вмещает то ли 3, то ли 4 литра. Помогите Тане определить ёмкость второго кувшина. (Заглядывая в кувшин, нельзя понять, сколько в нём воды.) Дядька Черномор написал на листке бумаги число 20 и отдал листок тридцати трём богатырям. Каждый богатырь (по очереди) либо прибавил к числу единицу, либо отнял единицу. Могло ли в результате получиться число 10? В данную окружность вписать прямоугольник так, чтобы две данные точки внутри окружности лежали на сторонах прямоугольника. Существуют ли такие три квадратных трёхчлена, что каждый из них имеет корень, а сумма любых двух из них корней не имеет? В пространстве заданы три луча: DA, DB и DC,
имеющие общее начало D, причём ∠ADB = ∠ADC = ∠BDC = 90°.
Сфера пересекает луч DA в точках A1 и A2, луч
DB – в точках B1 и B2, луч DC
– в точках C1 и C2.
Найдите площадь треугольника A2B2C2,
если площади треугольников DA1B1,
DA1C1, DB1C1 и
DA2B2 равны соответственно
Решить уравнение (x² – x + 1)4 – 10x²(x² – x + 1)² + 9x4 = 0. На юбилей 57-й школы Московский Монетный Двор выпустил юбилейные монеты достоинством в 57 копеек. А на юбилей 239-й школы монеты достоинством в 239 копеек выпустил Санкт-Петербургский Монетный Двор. Чтобы никому не было обидно, количество денег, выпущенных оба раза, было одинаково. Смогут ли Олег и 36 его друзей разделить все выпущенные монеты так, чтобы каждому досталось одинаковое количество монет? Сколько нулей, единиц, троек? Подряд выписаны все целые числа от 1 до 100. Сколько раз в этой записи встречаются цифры: а) нуль? б) единица; в)три? Сумма пяти чисел равна 200. Докажите, что их произведение не может оканчиваться на 1999. |
Страница: << 52 53 54 55 56 57 58 >> [Всего задач: 391]
На шахматной доске 8×8 расставлено наибольшее возможное число слонов так, что никакие два слона не угрожают друг другу.
Можно ли ходом коня обойти все клетки шахматной доски, начав с клетки а1, закончив в клетке h8 и на каждой клетке доски побывав ровно один раз?
12 кузнецов должны подковать 15 лошадей. Каждый кузнец тратит на одну подкову 5 минут. Какое наименьшее время они должны потратить на работу? (Учтите, лошадь не может стоять на двух ногах.)
Миша загадал число не меньше 1 и не больше 1000. Васе разрешено задавать только такие вопросы, на которые Миша может ответить «да» или «нет» (Миша всегда говорит правду). Может ли Вася за 10 вопросов определить загаданное число?
Имеется пять звеньев цепи по три кольца в каждом.
Страница: << 52 53 54 55 56 57 58 >> [Всего задач: 391]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке