|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Изобразите на фазовой плоскости Opq множества точек (p, q), для которых все корни уравнения x³ + px + q = 0 не превосходят по модулю 1. а) Докажите, что при n = 2k среди полученных фигур не более 2k - 1 углов. б) Может ли при n = 100 среди полученных фигур быть только три угла? Найдите все решения уравнения 1/x + 1/y + 1/z = 1 в целых числах, отличных |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 32]
В ячейки куба 11×11×11 поставлены по одному числа 1, 2, ..., 1331. Из одного углового кубика в противоположный угловой отправляются два червяка. Каждый из них может проползать в соседний по грани кубик, при этом первый может проползать, если число в соседнем кубике отличается на 8, второй – если отличается на 9. Существует ли такая расстановка чисел, что оба червяка смогут добраться до противоположного углового кубика?
Три натуральных числа таковы, что произведение каждых двух из них делится на сумму этих двух чисел.
В клетки таблицы 100×100 записаны ненулевые цифры. Оказалось, что все 100 стозначных чисел, записанных по горизонтали, делятся на 11. Могло ли так оказаться, что ровно 99 стозначных чисел, записанных по вертикали, также делятся на 11?
Положительные числа x, y, z таковы, что модуль разности любых двух из них меньше 2.
Внутри параллелограмма ABCD выбрана точка M, а внутри треугольника AMD точка N, причём ∠MNA + ∠ MCB = ∠MND + ∠MBC = 180°.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 32] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|