ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
параграфы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Середины сторон выпуклого шестиугольника образуют шестиугольник, противоположные стороны которого параллельны. Найдите все трехзначные числа, каждая натуральная степень которых оканчивается на три цифры, составляющие первоначальное число.
Найдите четырехзначное число, являющееся точным квадратом, первые две цифры которого равны между собой и последние две цифры которого также равны между собой.
Окружность покрыта несколькими дугами. Эти дуги могут налегать друг на друга, но ни одна из них не покрывает окружность целиком. Доказать, что всегда можно выбрать несколько из этих дуг так, чтобы они тоже покрывали всю окружность и составляли в сумме не более 720o . |
Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 176]
Докажите, что отрезки, соединяющие вершины треугольника с точками касания противоположных сторон с соответствующими вневписанными окружностями, пересекаются в одной точке {(точка Нагеля))
Докажите, что высоты остроугольного треугольника
пересекаются в одной точке.
Прямые AP, BP и CP пересекают стороны
треугольника ABC (или их продолжения) в точках A1, B1 и C1.
Докажите, что:
На сторонах BC, CA и AB треугольника ABC
взяты точки A1, B1 и C1 так, что отрезки AA1, BB1 и CC1
пересекаются в одной точке. Прямые A1B1 и A1C1 пересекают
прямую, проходящую через вершину A параллельно стороне BC, в
точках C2 и B2 соответственно. Докажите, что AB2 = AC2.
а) Пусть
Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 176]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке