Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Автор: Фольклор

Пусть  x1, x2, ..., xn  – некоторые числа, принадлежащие отрезку  [0, 1].
Докажите, что на этом отрезке найдется такое число x, что   1/n (|x – x1| + |x – x2| + ... + |x – xn|)  = ½.

Вниз   Решение


Восстановите прямоугольный треугольник ABC  (∠C = 90°)  по вершинам A, C и точке на биссектрисе угла B .

ВверхВниз   Решение


Докажите, что среднее арифметическое всех делителей натурального числа n лежит на отрезке  

ВверхВниз   Решение


Прямые AP, BP и CP пересекают стороны треугольника ABC (или их продолжения) в точках A1, B1 и C1. Докажите, что:
а) прямые, проходящие через середины сторон BC, CA и AB параллельно прямым AP, BP и CP, пересекаются в одной точке;
б) прямые, соединяющие середины сторон BC, CA и AB с серединами отрезков AA1, BB1 и CC1, пересекаются в одной точке.

ВверхВниз   Решение


На плоскости даны точки A1 , A2 , An и точки B1 , B2 , Bn . Докажите, что точки Bi можно перенумеровать так, что для всех i j угол между векторами и – острый или прямой.

ВверхВниз   Решение


Метод Ньютона. Для приближенного нахождения корней уравнения f (x) = 0 Ньютон предложил искать последовательные приближения по формуле

xn + 1 = xn - $\displaystyle {\frac{f(x_n)}{f'(x_n)}}$,

(начальное условие x0 следует выбирать поближе к искомому корню).
Докажите, что для функции f (x) = x2 - k и начального условия x0 > 0 итерационный процесс всегда будет сходиться к $ \sqrt{k}$, то есть $ \lim\limits_{n\to\infty}^{}$xn = $ \sqrt{k}$.
Как будет выражаться xn + 1 через xn? Сравните результат с формулой из задачи 9.48.

ВверхВниз   Решение


На какие натуральные числа можно сократить дробь  ,  если известно, что она сократима и что числа m и n взаимно просты.

ВверхВниз   Решение


Сторона основания ABC правильной треугольной пирамиды ABCD равна 4, угол между боковыми рёбрами пирамиды равен arccos . Точки A1 и C1 – середины рёбер AD и CD соответственно, CB1 – высота в треугольнике BCD . Найдите: 1) угол между прямыми AC и B1C1 ; 2) площадь треугольника A1B1C1 ; 3) расстояние от точки A до плоскости A1B1C1 ; 4) радиус вписанного в пирамиду A1B1C1D шара.

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 82]      



Задача 57612  (#12.029B)

Тема:   [ Вписанная, описанная и вневписанная окружности; их радиусы ]
Сложность: 5+
Классы: 9

Докажите, что если

sin$\displaystyle \alpha$ + sin$\displaystyle \beta$ + sin$\displaystyle \gamma$ = $\displaystyle \sqrt{3}$(cos$\displaystyle \alpha$ + cos$\displaystyle \beta$ + cos$\displaystyle \gamma$),

то один из углов треугольника ABC равен 60o.
Прислать комментарий     Решение

Задача 57613  (#12.030)

Тема:   [ Длины сторон, высот, медиан и биссектрис ]
Сложность: 2+
Классы: 9

Докажите, что abc = 4prR и  ab + bc + ca = r2 + p2 + 4rR.
Прислать комментарий     Решение


Задача 57614  (#12.031)

Тема:   [ Длины сторон, высот, медиан и биссектрис ]
Сложность: 2+
Классы: 9

Докажите, что  $ {\frac{1}{ab}}$ + $ {\frac{1}{bc}}$ + $ {\frac{1}{ca}}$ = $ {\frac{1}{2Rr}}$.
Прислать комментарий     Решение


Задача 57615  (#12.032)

Тема:   [ Длины сторон, высот, медиан и биссектрис ]
Сложность: 2+
Классы: 9

Докажите, что $ {\frac{a+b-c}{a+b+c}}$ = tg$ \left(\vphantom{\frac{\alpha }{2}}\right.$$ {\frac{\alpha }{2}}$$ \left.\vphantom{\frac{\alpha }{2}}\right)$tg$ \left(\vphantom{\frac{\beta }{2}}\right.$$ {\frac{\beta}{2}}$$ \left.\vphantom{\frac{\beta }{2}}\right)$.
Прислать комментарий     Решение


Задача 57616  (#12.033)

Тема:   [ Длины сторон, высот, медиан и биссектрис ]
Сложность: 2+
Классы: 9

Докажите, что ha = bc/2R.
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 82]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .