Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

При каких n многочлен  (x + 1)nxn – 1  делится на:
  а)  x² + x + 1;   б)  (x² + x + 1)²;   в) (x² + x + 1)³?

Вниз   Решение


Докажете, что в звезде, изображенной на картинке, не могут быть выполнены одновременно неравенства BC > AB, DE > CD, FG > EF, HK > GH, LA > KL.

ВверхВниз   Решение


Найти все прямоугольники, которые можно разрезать на 13 равных квадратов.

ВверхВниз   Решение


В треугольнике ABC отношение стороны BC к стороне AC равно 3, а $ \angle$ACB = $ \alpha$. Из вершины C проведены два луча, делящие угол ACB на три равные части. Найдите отношение отрезков этих лучей, заключённых внутри треугольника ABC.

ВверхВниз   Решение


Плоский многоугольник A1A2...An составлен из n твёрдых стержней, соединенных шарнирами. Доказать, что если n > 4, то его можно деформировать в треугольник.

ВверхВниз   Решение


Многоугольник, описанный около окружности радиуса r, разрезан на треугольники (произвольным образом). Докажите, что сумма радиусов вписанных окружностей этих треугольников больше r.

ВверхВниз   Решение


При каких A и B многочлен  Axn+1 + Bxn + 1  имеет число  x = 1  не менее чем двукратным корнем?

ВверхВниз   Решение


Длины сторон треугольника образуют арифметическую прогрессию. Докажите, что радиус вписанной окружности равен трети одной из высот треугольника.

ВверхВниз   Решение


Прямые AP, BP и CP пересекают прямые BC, CA и AB в точках A1, B1 и C1 соответственно. Точки A2, B2 и C2 выбраны на прямых BC, CA и AB так, что  $ \overline{BA_2}$ : $ \overline{A_2C}$ = $ \overline{A_1C}$ : $ \overline{BA_1}$ $ \overline{CB_2}$ : $ \overline{B_2A}$ = $ \overline{B_1A}$ : $ \overline{CB_1}$ и  $ \overline{AC_2}$ : $ \overline{C_2B}$ = $ \overline{C_1B}$ : $ \overline{AC_1}$. Докажите, что прямые AA2, BB2 и CC2 тоже пересекаются в одной точке Q (или параллельны).

ВверхВниз   Решение


В выпуклом четырёхугольнике ABCD сторона AD равна 7, сторона DC равна 5, сторона BC равна 5$ {\frac{19}{20}}$. Известно, что угол BAD острый, угол ABC тупой, причём синус угла BAD равен $ {\frac{3}{5}}$, косинус угла ADC равен - $ {\frac{3}{5}}$. Найдите радиус окружности, касающейся сторон AB, BC и AD.

ВверхВниз   Решение


На плоскости дано N точек, никакие три из которых не лежат на одной прямой. Если A, B, C — любые три из них, то внутри треугольника ABC нет ни одной точки из данных. Доказать, что эти точки можно занумеровать так, что многоугольник A1A2...An будет выпуклым.

ВверхВниз   Решение


Биссектрисы тупых углов при основании трапеции пересекаются на другом её основании.
Найдите стороны трапеции, если её высота равна 12, а длины биссектрис равны 15 и 13.

ВверхВниз   Решение


В треугольнике ABC высота BD равна 11,2 а высота AE равна 12. Точка E лежит на стороне BC и BE : EC = 5 : 9. Найдите сторону AC.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 41]      



Задача 65454

Тема:   [ Разрезания на части, обладающие специальными свойствами ]
Сложность: 3+
Классы: 8,9

Из одинаковых неравнобедренных прямоугольных треугольников составили прямоугольник (без дырок и наложений).
Обязательно ли какие-то два из этих треугольников расположены так, что образуют прямоугольник?

Прислать комментарий     Решение

Задача 65458

Тема:   [ Уравнения в целых числах ]
Сложность: 3+
Классы: 9,10,11

Пусть p – простое число. Сколько существует таких натуральных n, что pn делится на  p + n?

Прислать комментарий     Решение

Задача 65461

Темы:   [ Замощения костями домино и плитками ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 7,8,9

Будем называть клетчатый многоугольник выдающимся, если он не является прямоугольником и из нескольких его копий можно сложить подобный ему многоугольник. Например, уголок из трёх клеток – выдающийся многоугольник (см. рис.).

  а) Придумайте выдающийся многоугольник из четырёх клеток.
  б) При каких  n > 4  существует выдающийся многоугольник из n клеток?

Прислать комментарий     Решение

Задача 65462

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Принцип крайнего (прочее) ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 7,8,9

Из целых чисел от 1 до 100 удалили k чисел. Обязательно ли среди оставшихся чисел можно выбрать k различных чисел с суммой 100, если
  а)  k = 9;   б)  k = 8?

Прислать комментарий     Решение

Задача 65463

Темы:   [ Неравенство треугольника (прочее) ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Периметр треугольника ]
Сложность: 3+
Классы: 8,9

Докажите, что сумма длин любых двух медиан произвольного треугольника
  а) не больше ¾ P, где P – периметр этого треугольника;
  б) не меньше ¾ p, где p – полупериметр этого треугольника.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 41]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .