Страница:
<< 1 2
3 >> [Всего задач: 12]
|
|
Сложность: 4- Классы: 8,9,10
|
Пусть M и N – середины гипотенузы AB и катета BC прямоугольного треугольника ABC соответственно. Вневписанная окружность треугольника ACM касается стороны AM в точке Q, а прямой AC – в точке P. Докажите, что точки P, Q и N лежат на одной прямой.
|
|
Сложность: 4- Классы: 9,10,11
|
Два квадрата расположены так, как показано на рисунке. Докажите, что площади заштрихованных четырёхугольников равны.
|
|
Сложность: 4 Классы: 8,9,10
|
Дан квадратный лист бумаги со стороной 2016. Можно ли, согнув его не более десяти раз, построить отрезок длины 1?
|
|
Сложность: 4 Классы: 9,10,11
|
В выпуклой n-угольной призме равны все боковые грани. При каких n эта призма обязательно прямая?
|
|
Сложность: 4+ Классы: 8,9,10
|
Точки IA, IB, IC – центры вневписанных окружностей треугольника ABC, касающихся сторон BC, AC и AB соответственно. Перпендикуляр, опущенный из IA на AC, пересекает перпендикуляр, опущенный из IB на BC, в точке XC. Аналогично определяются точки XA и XB. Докажите, что прямые IAXA, IBXB и
ICXC пересекаются в одной точке.
Страница:
<< 1 2
3 >> [Всего задач: 12]