Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 48]
Задача
66025
(#11.4)
|
|
Сложность: 4 Классы: 9,10,11
|
Равносторонний треугольник ABC вписан в окружность Ω и описан вокруг окружности ω. На сторонах AC и AB выбраны точки P и Q соответственно так, что отрезок PQ проходит через центр O треугольника ABC. Окружности Гb и Гc построены на отрезках BP и CQ как на диаметрах.
Докажите, что окружности Гb и Гc пересекаются в двух точках, одна из которых лежит на Ω, а другая – на ω.
Задача
66150
(#9.4)
|
|
Сложность: 5 Классы: 9,10,11
|
Существует ли такая бесконечная возрастающая последовательность a1, a2, a3, ... натуральных чисел, что сумма любых двух различных членов последовательности взаимно проста с суммой любых трёх различных членов последовательности?
Задача
66158
(#10.4)
|
|
Сложность: 5- Классы: 9,10,11
|
На доске выписаны в ряд n положительных чисел a1, a2, ..., an. Вася хочет выписать под каждым числом ai число bi ≥ ai так, чтобы для каждых двух из чисел b1, b2, ..., bn отношение одного из них к другому было целым. Докажите, что Вася может выписать требуемые числа так, чтобы выполнялось неравенство b1b2...bn ≤ 2(n–1)/2a1a2...an.
Задача
66165
(#11.4)
|
|
Сложность: 5 Классы: 9,10,11
|
У фокусника и помощника есть колода с картами; одна сторона ("рубашка") у всех карт одинакова, а другая окрашена в один из 2017 цветов (в колоде по 1000000 карт каждого цвета). Фокусник и помощник собираются показать следующий фокус. Фокусник выходит из зала, а зрители выкладывают на стол в ряд n > 1 карт рубашками вниз. Помощник смотрит на эти карты, а затем все, кроме одной, переворачивает рубашкой вверх, не меняя их порядка. Затем входит фокусник, смотрит на стол, указывает на одну из закрытых карт и называет её цвет. При каком наименьшем k фокусник может заранее договориться с помощником так, чтобы фокус гарантированно удался?
Задача
66016
(#9.5)
|
|
Сложность: 4- Классы: 9,10,11
|
Олег нарисовал пустую таблицу 50×50 и написал сверху от каждого столбца и слева от каждой строки по числу. Оказалось, что все 100 написанных чисел различны, причём 50 из них рациональные, а остальные 50 – иррациональные. Затем в каждую клетку таблицы он записал сумму чисел, написанных около её строки и её столбца ("таблица сложения"). Какое наибольшее количество сумм в этой таблице могли оказаться рациональными числами?
Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 48]