ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Докажите, что если В пространстве даны точки O1, O2, O3 и точка A. Точка A симметрично отражается относительно точки O1, полученная точка A1 -- относительно O2, полученная точка A2 — относительно O3. Получаем некоторую точку A3, которую также последовательно отражаем относительно O1, O2, O3. Доказать, что полученная точка совпадает с A. Выведите из неравенства Мюрхеда (задача 61424) неравенство между средним арифметическим и средним геометрическим. |
Страница: 1 2 >> [Всего задач: 6]
В треугольнике ABC ∠A = 45°, BH – высота, точка K лежит на стороне AC, причём BC = CK.
Дан параллелограмм ABCD. На стороне AB взята точка M так, что AD = DM. На стороне AD взята точка N так, что AB = BN.
Существует ли выпуклый пятиугольник, в котором каждая диагональ равна какой-то стороне?
В треугольнике ABC серединные перпендикуляры к сторонам AB и BC пересекают сторону AC в точках P и Q соответственно, причём точка P лежит на отрезке AQ. Докажите, что описанные окружности треугольников PBC и QBA пересекаются на биссектрисе угла PBQ.
Отрезок AD – диаметр описанной окружности остроугольного треугольника ABC. Через точку H пересечения высот этого треугольника провели прямую, параллельную стороне BC, которая пересекает стороны AB и AC в точках E и F соответственно.
Страница: 1 2 >> [Всего задач: 6]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке