Страница: 1
2 3 4 5 6 7 >> [Всего задач: 48]
Задача
66642
(#1 [8 кл])
|
|
Сложность: 3 Классы: 8,9
|
Внутри квадрата расположены три окружности, каждая из которых касается внешним образом двух других, а также касается двух сторон квадрата. Докажите, что радиусы двух из данных окружностей одинаковы.
Задача
66643
(#2 [8 кл])
|
|
Сложность: 3 Классы: 8,9
|
Дан вписанный четырехугольник $ABCD$. Прямые $AB$ и $DC$ пересекаются в точке $E$, а прямые $BC$ и $AD$ — в точке $F$. В треугольнике $AED$ отмечен центр вписанной окружности $I$, а из точки $F$ проведен луч, перпендикулярный биссектрисе угла $AID$. В каком отношении этот луч делит угол $AFB$?
Задача
66644
(#3 [8 кл])
|
|
Сложность: 3 Классы: 8,9
|
Пусть $AL$ — биссектриса треугольника $ABC$, точка $D$ — ее середина, $E$ — проекция $D$ на $AB$. Известно, что $AC = 3 AE$. Докажите, что треугольник $CEL$ равнобедренный.
Задача
66645
(#4 [8 кл])
|
|
Сложность: 3 Классы: 8,9
|
Четырехугольник $ABCD$ вписан в окружность. По дуге $AD$, не содержащей точек $B$ и $C$, движется точка $P$. Фиксированная прямая $l$, перпендикулярная прямой $BC$, пересекает лучи $BP$, $CP$ в точках $B_0$, $C_0$ соответственно. Докажите, что касательная, проведенная к описанной окружности треугольника $PB_0C_0$ в точке $P$, проходит через фиксированную точку.
Задача
66646
(#5 [8-9 кл])
|
|
Сложность: 3+ Классы: 8,9
|
У равносторонних треугольников $ABC$ и $CDE$ вершина $C$ лежит на отрезке $AE$, вершины $B$ и $D$ по одну сторону от этого отрезка. Описанные около треугольников окружности с центрами $O_1$ и $O_2$ повторно пересекаются в точке $F$. Прямая $O_1O_2$ пересекает $AD$ в точке $K$. Докажите, что $AK=BF$.
Страница: 1
2 3 4 5 6 7 >> [Всего задач: 48]