Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 48]
Задача
66652
(#11 [8-9 кл])
|
|
Сложность: 3+ Классы: 8,9,10
|
Пусть $I$ – центр вписанной окружности неравнобедренного треугольника $ABC$. Докажите, что существует единственная пара точек $M$, $N$, лежащих соответственно на сторонах $AC$, $BC$, такая, что $\angle AIM = \angle BIN$ и $MN \parallel AB$.
Задача
66653
(#12 [8-9 кл])
|
|
Сложность: 3+ Классы: 8,9,10
|
Пусть $D$ – основание внешней биссектрисы угла $B$ треугольника $ABC$, в котором $AB > BC$. Сторона $AC$ касается вписанной и вневписанной окружностей в точках $K$ и $K_1$ соответственно, точки $I$ и $I_1$ – центры этих окружностей. Прямая $BK$ пересекает $DI_1$ в точке $X$, а $BK_1$ пересекает $DI$ в точке $Y$. Докажите, что $XY \perp AC$.
Задача
66654
(#13 [9-11 кл])
|
|
Сложность: 3+ Классы: 9,10,11
|
На окружности, описанной около четырехугольника $ABCD$, отмечены точки $M$ и
$N$ – середины дуг $AB$ и $CD$ соответственно. Докажите, что $MN$ делит пополам отрезок, соединяющий центры вписанных окружностей треугольников $ABC$ и $ADC$.
Задача
66655
(#14 [9-11 кл])
|
|
Сложность: 3 Классы: 9,10,11
|
Дан треугольник $ABC$ с прямым углом $C$. Точки $K$, $L$, $M$ – середины сторон $AB$, $BC$, $CA$ соответственно, $N$ – точка на стороне $AB$. Прямая $CN$ пересекает $KM$ и $KL$ в точках $P$ и $Q$. Точки $S$, $T$ на сторонах $AC$, $BC$ таковы, что четырехугольники $APQS$, $BPQT$ – вписанные. Докажите, что
а) если $CN$ – биссектриса, то прямые $CN$, $ML$, $ST$ пересекаются в одной точке;
б) если $CN$ – высота, то $ST$ проходит через середину $ML$.
Задача
66656
(#15 [9-11 кл])
|
|
Сложность: 3+ Классы: 9,10,11
|
В остроугольном треугольнике $ABC$ проведены высоты $AH_1, BH_2, CH_3$, которые пересекаются в ортоцентре $H$. Точки $P$ и $Q$ симметричны $H_2$ и $H_3$ относительно $H$. Описанная окружность треугольника $PH_1Q$ пересекает во второй раз высоты $BH_2$ и $CH_3$ в точках $R$ и $S$. Докажите, что $RS$ – средняя линия треугольника $ABC$.
Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 48]