ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 48]      



Задача 66657  (#16 [9-11 кл])

Темы:   [ Преобразования плоскости (прочее) ]
[ Биссектриса угла ]
Сложность: 4
Классы: 9,10,11

Автор: Рябов П.

В треугольнике $ABC$, где $AB < BC$, биссектриса угла $C$ пересекает в точке $P$ прямую, параллельную $AC$ и проходящую через вершину $B$, а в точке $R$ – касательную из вершины $B$ к описанной окружности треугольника. Точка $R'$ симметрична $R$ относительно $AB$. Докажите, что $\angle R'PB = \angle RPA$.
Прислать комментарий     Решение


Задача 66658  (#17 [10-11 кл])

Темы:   [ Касающиеся окружности ]
[ Три прямые, пересекающиеся в одной точке ]
[ Радикальная ось ]
[ Теорема синусов ]
[ Теоремы Чевы и Менелая ]
Сложность: 5
Классы: 10,11

Автор: Тахаев С.

Окружности $\alpha$, $\beta$, $\gamma$ касаются друг друга внешним образом и касаются изнутри окружности $\Omega$ в точках $A_1$, $B_1$, $C_1$ соответственно. Общая внутренняя касательная к $\alpha$ и $\beta$ пересекает не содержащую $C_1$ дугу $A_1B_1$ в точке $C_2$. Точки $A_2$, $B_2$ определяются аналогично. Докажите, что прямые $A_1A_2$, $B_1B_2$, $C_1C_2$ пересекаются в одной точке.
Прислать комментарий     Решение


Задача 66659  (#18 [10-11 кл])

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 5
Классы: 10,11

На сторонах $AB,BC,CA$ треугольника $ABC$ выбраны точки $C_1,A_1,B_1$ так, что отрезки $AA_1,BB_1,CC_1$ пересекаются в одной точке. Лучи $B_1A_1$ и $B_1C1$ пересекают описанную окружность в точках $A_2$ и $C_2$. Докажите, что точки $A,C,$ точка пересечения $A_2C_2$ с $BB_1$ и середина $A_2C_2$ лежат на одной окружности.
Прислать комментарий     Решение


Задача 66660  (#19 [10-11 кл])

Темы:   [ Необычные построения (прочее) ]
[ Ортоцентр и ортотреугольник ]
[ Вписанные и описанные окружности ]
Сложность: 4+
Классы: 10,11

Имеется треугольник $ABC$ и линейка, на которой отмечены отрезки, равные сторонам треугольника. Постройте этой линейкой ортоцентр треугольника, образованного точками касания вписанной в треугольник $ABC$ окружности.
Прислать комментарий     Решение


Задача 66661  (#20 [10-11 кл])

Темы:   [ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Преобразования плоскости (прочее) ]
[ Теорема синусов ]
Сложность: 5
Классы: 10,11

Автор: Зимин А.

Дан неравнобедренный треугольник $ABC$. Вписанная окружность касается его сторон $AB$, $AC$ и $BC$ в точках $D$, $E$, $F$ соответственно. Вневписанная окружность касается стороны $BC$ в точке $N$. Пусть $T$ – ближайшая к $N$ точка пересечения прямой $AN$ с вписанной окружностью, а $K$ – точка пересечения прямых $DE$ и $FT$. Докажите, что $AK||BC$.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 48]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .