|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
год/номер:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Даны 4 точки на плоскости $A$, $B$, $C$, $D$, не образующие прямоугольник. Пусть стороны треугольника $T$ равны $AB+CD$, $AC+BD$, $AD+BC$. Докажите, что $T$ – остроугольный. Дано натуральное (целое неотрицательное) число а и целое положительное число d. Вычислить частное q и остаток r при делении а на d, не используя операций div и mod. Докажите, что сумма
cos 32x + a31cos 31x + a30cos 30x + ... + a1cos x
принимает как положительные, так и отрицательные значения.
|
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 371]
Можно ли в прямоугольной таблице 5×10 так расставить числа, чтобы сумма чисел каждой строки равнялась бы 30, а сумма чисел каждого столбца равнялась бы 10?
Можно ли провести из одной точки на плоскости пять лучей так, чтобы среди образованных ими углов было ровно четыре острых?
В поход пошли 20 туристов. Самому старшему из них 35 лет, а самому младшему 20 лет. Верно ли, что среди туристов есть одногодки?
Придя в тир, Петя купил 5 пуль. За каждый успешный выстрел ему дают еще 5 пуль. Петя утверждает, что он сделал 50 выстрелов и 8 раз попал в цель, а его друг Вася говорит, что этого не может быть. Кто из мальчиков прав?
В турнире по олимпийской системе (проигравший выбывает) участвует 50 боксеров.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 371] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|