ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В каком отношении делит объём куба плоскость, перпендикулярная его диагонали и делящая диагональ в отношении: а) 2:1; б) 3:1? В плоскости расположена прямая y и прямоугольный треугольник ABC с катетами AC=3; BC=4 . Вершина C находится на расстоянии 10 от прямой y . Угол между y и направлением катета AC равен α . Надо определить угол α , при котором поверхность, полученная вращением треугольника ABC вокруг прямой y , будет наименьшей. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 50]
Найдите все решения уравнения 1/x + 1/y + 1/z = 1 в целых числах, отличных
Между некоторыми из 2n городов установлено воздушное сообщение, причём каждый город связан (беспосадочными рейсами) не менее чем с n другими.
Даны числа 1, 2, 3, ..., 1000. Найдите наибольшее число m, обладающее таким свойством: какие бы m из данных чисел ни вычеркнуть, среди оставшихся 1000 – m чисел найдутся два, из которых одно делится на другое.
Докажите, что сумма площадей пяти треугольников,
образованных парами соседних сторон и соответствующими диагоналями
выпуклого пятиугольника, больше площади всего пятиугольника.
Даны два взаимно простых натуральных числа a и b. Рассмотрим множество M целых чисел, представимых в виде ax + by, где x и y – целые неотрицательные числа.
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке