ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Натуральное число n таково, что 3n + 1 и 10n + 1 являются квадратами натуральных чисел. Докажите, что число 29n + 11 – составное. Существует ли такая последовательность натуральных чисел, чтобы любое натуральное число $1$, $2$, $3$, ... можно было представить единственным способом в виде разности двух чисел этой последовательности? На прямых BC, CA и AB взяты точки A1, B1
и C1. Пусть P1 — произвольная точка прямой BC,
P2 — точка пересечения прямых P1B1 и AB, P3 — точка
пересечения прямых P2A1 и CA, P4 — точка
пересечения
P3C1 и BC и т. д. Докажите, что точки P7 и P1
совпадают.
Каждый из двух правильных многоугольников P и Q разрезали прямой на две части. Одну из частей P и одну из частей Q сложили друг с другом по линии разреза. Может ли получиться правильный многоугольник, не равный ни одному из исходных, и если да, то сколько у него может быть сторон? Имеется набор из 20 гирь, с помощью которых можно взвесить любой целый вес
от 1 до 1997 г (гири кладутся на одну чашку весов, измеряемый вес – на другую). Каков минимально возможный вес самой тяжелой гири такого набора, если:
В треугольнике ABC провели биссектрису CL. Точки A1 и B1 симметричны точкам A и B относительно прямой CL, A2 и B2 симметричны точкам A и B относительно точки L. Пусть O1 и O2 – центры описанных окружностей треугольников AB1B2 и BA1A2. Докажите, что углы O1CA и O2CB равны. Даны окружность и не лежащая на ней точка. Из всех треугольников, одна вершина которых совпадает с данной точкой, а две другие лежат на окружности, выбран треугольник наибольшей площади. Докажите, что он равнобедренный. а) Укажите два прямоугольных треугольника, из
которых можно сложить треугольник, длины сторон и площадь
которого — целые числа.
Каково наибольшее n, при котором так можно расположить n точек на плоскости, чтобы каждые 3 из них служили вершинами прямоугольного треугольника? Продолжения сторон AB и CD четырехугольника ABCD
пересекаются в точке P, а продолжения сторон BC и AD — в
точке Q. Через точку P проведена прямая, пересекающая стороны BC
и AD в точках E и F. Докажите, что точки пересечения диагоналей
четырехугольников
ABCD, ABEF и CDFE лежат на прямой, проходящей
через точку Q.
Три прямые проходят через точку O и образуют попарно равные углы. На одной из них взяты точки A1, A2, на другой – B1, B2, так что точка C1 пересечения прямых A1B1 и A2B2 лежит на третьей прямой. Пусть C2 – точка пересечения A1B2 и A2B1. Докажите, что угол C1OC2 прямой. Серёжа придумал фигуру, которую легко разрезать на две части и сложить из них квадрат (см. рис.).
Докажите, что треугольник ABC остроугольный тогда и только
тогда, когда на его сторонах BC, CA и AB можно выбрать такие
внутренние точки A1, B1 и C1, что
AA1 = BB1 = CC1.
Пусть L — взаимно однозначное отображение плоскости в себя. Предположим,
что оно обладает следующим свойством: если три точки лежат на одной прямой, то
их образы тоже лежат на одной прямой. Докажите, что тогда L — аффинное
преобразование.
Прямая, проходящая через вершину A квадрата ABCD, пересекает сторону CD в точке E и прямую BC в точке F. Докажите, что 1/AE2 + 1/AF2 = 1/AB2. Все имеющиеся на складе конфеты разных сортов разложены по n коробкам, на которые установлены цены в 1, 2, ..., n у. е. соответственно. Требуется купить такие k из этих коробок наименьшей суммарной стоимости, которые содержат заведомо не менее k/n массы всех конфет. Известно, что масса конфет в каждой коробке не превосходит массы конфет в любой более дорогой коробке. |
Страница: << 1 2 3 4 5 [Всего задач: 24]
Можно ли замостить все пространство равными тетраэдрами, все грани которых — прямоугольные треугольники?
В коробке лежат карточки, занумерованные натуральными числами от 1 до 2006. На карточке с номером 2006 лежит карточка с номером 2005 и т. д. до 1. За ход разрешается взять одну верхнюю карточку (из любой коробки) и переложить ее либо на дно пустой коробки, либо на карточку с номером на единицу больше. Сколько пустых коробок нужно для того, чтобы переложить все карточки в другую коробку?
Дан треугольник ABC и точки P и Q, лежащие на его описанной окружности. Точку P отразили относительно прямой BC и получили точку P_a. Точку пересечения прямых QP_a и BC обозначим A'. Точки B' и C' строятся аналогично. Докажите, что точки A', B' и C' лежат на одной прямой.
Все имеющиеся на складе конфеты разных сортов разложены по n коробкам, на которые установлены цены в 1, 2, ..., n у. е. соответственно. Требуется купить такие k из этих коробок наименьшей суммарной стоимости, которые содержат заведомо не менее k/n массы всех конфет. Известно, что масса конфет в каждой коробке не превосходит массы конфет в любой более дорогой коробке.
Страница: << 1 2 3 4 5 [Всего задач: 24]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке