Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 16 задач
Версия для печати
Убрать все задачи

Натуральное число n таково, что  3n + 1  и  10n + 1  являются квадратами натуральных чисел. Докажите, что число  29n + 11  – составное.

Вниз   Решение


Автор: Лифшиц А.

Существует ли такая последовательность натуральных чисел, чтобы любое натуральное число $1$, $2$, $3$, ... можно было представить единственным способом в виде разности двух чисел этой последовательности?

ВверхВниз   Решение


На прямых BC, CA и AB взяты точки A1, B1 и C1. Пусть P1 — произвольная точка прямой BC, P2 — точка пересечения прямых P1B1 и AB, P3 — точка пересечения прямых P2A1 и CA, P4 — точка пересечения P3C1 и BC и т. д. Докажите, что точки P7 и P1 совпадают.

ВверхВниз   Решение


Каждый из двух правильных многоугольников P и Q разрезали прямой на две части. Одну из частей P и одну из частей Q сложили друг с другом по линии разреза. Может ли получиться правильный многоугольник, не равный ни одному из исходных, и если да, то сколько у него может быть сторон?

ВверхВниз   Решение


Автор: Разин М.

Имеется набор из 20 гирь, с помощью которых можно взвесить любой целый вес от 1 до 1997 г (гири кладутся на одну чашку весов, измеряемый вес – на другую). Каков минимально возможный вес самой тяжелой гири такого набора, если:
  а) веса гирь набора все целые,
  б) веса не обязательно целые?

ВверхВниз   Решение


В треугольнике ABC провели биссектрису CL. Точки A1 и B1 симметричны точкам A и B относительно прямой CL, A2 и B2 симметричны точкам A и B относительно точки L. Пусть O1 и O2 – центры описанных окружностей треугольников AB1B2 и BA1A2. Докажите, что углы O1CA и O2CB равны.

ВверхВниз   Решение


Даны окружность и не лежащая на ней точка. Из всех треугольников, одна вершина которых совпадает с данной точкой, а две другие лежат на окружности, выбран треугольник наибольшей площади. Докажите, что он равнобедренный.

ВверхВниз   Решение


а) Укажите два прямоугольных треугольника, из которых можно сложить треугольник, длины сторон и площадь которого — целые числа.
б) Докажите, что если площадь треугольника — целое число, а длины сторон — последовательные натуральные числа, то этот треугольник можно сложить из двух прямоугольных треугольников с целочисленными сторонами.

ВверхВниз   Решение


Каково наибольшее n, при котором так можно расположить n точек на плоскости, чтобы каждые 3 из них служили вершинами прямоугольного треугольника?

ВверхВниз   Решение


Продолжения сторон AB и CD четырехугольника ABCD пересекаются в точке P, а продолжения сторон BC и AD — в точке Q. Через точку P проведена прямая, пересекающая стороны BC и AD в точках E и F. Докажите, что точки пересечения диагоналей четырехугольников  ABCD, ABEF и CDFE лежат на прямой, проходящей через точку Q.

ВверхВниз   Решение


Три прямые проходят через точку O и образуют попарно равные углы. На одной из них взяты точки A1, A2, на другой – B1, B2, так что точка C1 пересечения прямых A1B1 и A2B2 лежит на третьей прямой. Пусть C2 – точка пересечения A1B2 и A2B1. Докажите, что угол C1OC2 прямой.

ВверхВниз   Решение


Серёжа придумал фигуру, которую легко разрезать на две части и сложить из них квадрат (см. рис.).


Покажите как по-другому разрезать эту фигуру на две части, из которых тоже можно сложить квадрат.

ВверхВниз   Решение


Докажите, что треугольник ABC остроугольный тогда и только тогда, когда на его сторонах BC, CA и AB можно выбрать такие внутренние точки A1, B1 и C1, что  AA1 = BB1 = CC1.

ВверхВниз   Решение


Пусть L — взаимно однозначное отображение плоскости в себя. Предположим, что оно обладает следующим свойством: если три точки лежат на одной прямой, то их образы тоже лежат на одной прямой. Докажите, что тогда L — аффинное преобразование.

ВверхВниз   Решение


Прямая, проходящая через вершину A квадрата ABCD, пересекает сторону CD в точке E и прямую BC в точке F. Докажите, что  1/AE2 + 1/AF2 = 1/AB2.

ВверхВниз   Решение


Все имеющиеся на складе конфеты разных сортов разложены по n коробкам, на которые установлены цены в 1, 2, ..., n  у. е. соответственно. Требуется купить такие k из этих коробок наименьшей суммарной стоимости, которые содержат заведомо не менее k/n массы всех конфет. Известно, что масса конфет в каждой коробке не превосходит массы конфет в любой более дорогой коробке.
  а) Какие коробки следует купить при  n = 10  и  k = 3 ?
  б) Тот же вопрос для произвольных натуральных  n ≥ k.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 [Всего задач: 24]      



Задача 105211

Темы:   [ Замощения костями домино и плитками ]
[ Развертка помогает решить задачу ]
[ Прямоугольный тетраэдр ]
[ Движение помогает решить задачу ]
[ Метод координат в пространстве (прочее) ]
Сложность: 4+
Классы: 10,11

Можно ли замостить все пространство равными тетраэдрами, все грани которых — прямоугольные треугольники?
Прислать комментарий     Решение


Задача 105212

Темы:   [ Теория алгоритмов (прочее) ]
[ Индукция (прочее) ]
[ Процессы и операции ]
Сложность: 5
Классы: 9,10,11

В коробке лежат карточки, занумерованные натуральными числами от 1 до 2006. На карточке с номером 2006 лежит карточка с номером 2005 и т. д. до 1. За ход разрешается взять одну верхнюю карточку (из любой коробки) и переложить ее либо на дно пустой коробки, либо на карточку с номером на единицу больше. Сколько пустых коробок нужно для того, чтобы переложить все карточки в другую коробку?
Прислать комментарий     Решение


Задача 105214

Темы:   [ Прямая Симсона ]
[ Вписанные и описанные окружности ]
[ Гомотетия помогает решить задачу ]
[ Свойства симметрий и осей симметрии ]
Сложность: 5
Классы: 8,9,10

Дан треугольник ABC и точки P и Q, лежащие на его описанной окружности. Точку P отразили относительно прямой BC и получили точку P_a. Точку пересечения прямых QP_a и BC обозначим A'. Точки B' и C' строятся аналогично. Докажите, что точки A', B' и C' лежат на одной прямой.
Прислать комментарий     Решение


Задача 105220

Темы:   [ Раскладки и разбиения ]
[ Целая и дробная части. Принцип Архимеда ]
[ Линейные неравенства и системы неравенств ]
[ Системы алгебраических неравенств ]
[ Средние величины ]
Сложность: 5+
Классы: 9,10,11

Все имеющиеся на складе конфеты разных сортов разложены по n коробкам, на которые установлены цены в 1, 2, ..., n  у. е. соответственно. Требуется купить такие k из этих коробок наименьшей суммарной стоимости, которые содержат заведомо не менее k/n массы всех конфет. Известно, что масса конфет в каждой коробке не превосходит массы конфет в любой более дорогой коробке.
  а) Какие коробки следует купить при  n = 10  и  k = 3 ?
  б) Тот же вопрос для произвольных натуральных  n ≥ k.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .