ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В сундуке лежали два колпака белого цвета и три черного. В темную комнату завели трех мудрецов и надели на них какие-то колпаки из сундука. Потом вывели в другую комнату. Они не видят, какого цвета колпак на них, но видят колпакки других. Через некоторое время один из них догадался, какого цвета на нем колпак. Как? Какого цвета был колпак? Существуют ли два многоугольника, у которых все вершины общие, но нет ни одной общей стороны? Существует ли такой четырёхугольник, что любая диагональ делит его на два тупоугольных треугольника? Нарисуйте, как из данных трёх фигурок, использовав каждую ровно один раз, сложить фигуру, имеющую ось симметрии.
Какие значения может принимать разность возрастающей арифметической прогрессии a1, a2,..., a5, все члены которой принадлежат отрезку [0; 3π/2], если числа cos a1, cos a2, cos a3, а также числа sin a3, sin a4 и sin a5 в некотором порядке тоже образуют арифметические прогрессии. На вопрос о возрасте его детей математик ответил:
Докажите, что если для чисел a, b и c выполняются неравенства
| a - b| У Алёны есть мобильный телефон, заряда аккумулятора которого хватает на 6 часов разговора или 210 часов ожидания. Когда Алёна садилась в поезд, телефон был полностью заряжен, а когда она выходила из поезда, телефон разрядился. Сколько времени она ехала на поезде, если известно, что Алёна говорила по телефону ровно половину времени поездки? а) Докажите, что существует натуральное число, которое при замене любой тройки
соседних цифр на произвольную тройку остаётся составным. |
Страница: 1 2 >> [Всего задач: 6]
В некоторых клетках шахматной доски стоят фигуры. Известно, что на каждой горизонтали стоит хотя бы одна фигура, причём в разных горизонталях – разное число фигур. Докажите, что всегда можно отметить 8 фигур так, чтобы в каждой вертикали и каждой горизонтали стояла ровно одна отмеченная фигура.
От вулканостанции до вершины вулкана Стромболи надо идти 4 часа по дороге, а затем – 4 часа по тропинке. На вершине расположено два кратера. Первый кратер 1 час извергается, потом 17 часов молчит, потом опять 1 час извергается, и т.д. Второй кратер 1 час извергается, 9 часов молчит, 1 час извергается, и т.д. Во время извержения первого кратера опасно идти и по тропинке, и по дороге, а во время извержения второго опасна только тропинка. Ваня увидел, что ровно в 12 часов оба кратера начали извергаться одновременно. Сможет ли он когда-нибудь подняться на вершину вулкана и вернуться назад, не рискуя жизнью?
В ромбе ABCD величина угла B равна 40°, E – середина BC, F – основание перпендикуляра, опущенного из A на DE. Найдите величину угла DFC.
Внутри острого угла XOY взяты точки M и N, причём ∠XON = ∠YOM. На луче OX отмечена точка Q так, что ∠NQO = ∠MQX, а на луче OY – точка P так, что ∠NPO = ∠MPY. Докажите, что длины ломаных MPN и MQN равны.
а) Докажите, что существует натуральное число, которое при замене любой тройки
соседних цифр на произвольную тройку остаётся составным.
Страница: 1 2 >> [Всего задач: 6]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке