ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Этапы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи a1, a2, ..., an – такие числа, что a1 + a2 + ... + an = 0. Доказать, что в этом случае справедливо соотношение S = a1a2 + a1a3 + ... + an–1an ≤ 0 Квадратный трёхчлен f(x) разрешается заменить на один из трёхчленов или Можно ли с помощью таких операций из квадратного трёхчлена x² + 4x + 3 получить трёхчлен x² + 10x + 9? Решение |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 48]
Какое наибольшее число фишек можно поставить на клетки шахматной доски так, чтобы на каждой горизонтали, вертикали и диагонали (не только на главных) находилось чётное число фишек?
На доске написано n выражений вида *x² + *x + * = 0 (n – нечетное число). Двое играют в такую игру. Ходят по очереди. За ход разрешается заменить одну из звёздочек числом, не равным нулю. Через 3n ходов получится n квадратных уравнений. Первый игрок стремится к тому, чтобы как можно большее число этих уравнений не имело корней, а второй хочет ему помешать. Какое наибольшее число уравнений, не имеющих корней, может получить первый игрок независимо от игры второго?
Длины сторон треугольника – простые числа. Докажите, что его площадь не может быть целым числом.
Квадратный трёхчлен f(x) разрешается заменить на один из трёхчленов или Можно ли с помощью таких операций из квадратного трёхчлена x² + 4x + 3 получить трёхчлен x² + 10x + 9?
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 48] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|