ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Этапы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Найдите все такие тройки натуральных чисел m, n и l, что m + n = (НОД(m, n))², m + l = (НОД(m, l))², n + l = (НОД(n, l))². На плоскости дано конечное множество точек X и правильный треугольник T . Известно, что любое подмножество X' множества X , состоящее из не более 9 точек, можно покрыть двумя параллельными переносами треугольника T . Докажите, что все множество X можно покрыть двумя параллельными переносами T . Найдите все четверки действительных чисел, в каждой из которых любое число равно произведению каких-либо двух других чисел. В каждую клетку квадратной таблицы размера (2n – 1)×(2n – 1) ставится одно из чисел 1 или – 1. Расстановку чисел назовём удачной, если каждое число равно произведению всех соседних с ним (соседними считаются числа, стоящие в клетках с общей стороной). Найдите число удачных расстановок. В турнире по теннису n участников хотят провести парные (двое на двое) матчи так, чтобы каждый из участников имел своим противником каждого из остальных ровно в одном матче. При каких n возможен такой турнир?
Два прямоугольных треугольника расположены на плоскости так, что их медианы, проведенные к гипотенузам, параллельны. Докажите, что угол между некоторым катетом одного треугольника и некоторым катетом другого треугольника вдвое меньше угла между их гипотенузами. Часть подмножеств некоторого конечного множества выделена. Каждое выделенное подмножество состоит в точности из 2k элементов ( k – фиксированное натуральное число). Известно, что в каждом подмножестве, состоящем не более чем из (k+1)2 элементов, либо не содержится ни одного выделенного подмножества, либо все в нем содержащиеся выделенные подмножества имеют общий элемент. Докажите, что все выделенные подмножества имеют общий элемент. Пусть a, b, c – положительные числа, сумма которых равна 1.
Докажите неравенство: Даны два выпуклых многоугольника. Известно, что расстояние между
любыми двумя вершинами первого не больше 1 , расстояние между
любыми двумя вершинами второго также не больше 1, а расстояние между любыми двумя вершинами разных многоугольников больше,
чем 1/ Проведем через основание биссектрисы угла A разностороннего треугольника ABC отличную от стороны BC касательную к вписанной в треугольник окружности. Точку ее касания с окружностью обозначим через Ka . Аналогично построим точки Kb и Kc . Докажите, что три прямые, соединяющие точки Ka , Kb и Kc с серединами сторон BC , CA и AB соответственно, имеют общую точку, причем эта точка лежит на вписанной окружности. Докажите, что если два прямоугольных параллелепипеда имеют равные объемы, то их можно расположить в пространстве так, что любая горизонтальная плоскость, пересекающая один из них, будет пересекать и второй, причем по многоугольнику той же площади. Найдите все углы α , для которых набор чисел sinα , sin2α , sin3α совпадает с набором cosα , cos2α , cos3α . Точка M – середина основания AC остроугольного равнобедренного треугольника ABC. Точка N симметрична M относительно BC. Прямая, параллельная AC и проходящая через точку N, пересекает сторону AB в точке K. Найдите угол AKC. В строку записаны в некотором порядке натуральные числа от 1 до 1993. Над строкой производится следующая операция: если на первом месте стоит число k, то первые k чисел в строке переставляются в обратном порядке. Докажите, что через несколько таких операций на первом месте окажется число 1. Прямые, параллельные оси Ox, пересекают график функции y = ax³ + bx² + cx + d: первая – в точках A, D и E, вторая – в точках B, C и F (см. рис.). Докажите, что длина проекции дуги CD на ось Ox равна сумме длин проекций дуг AB и EF. Целые числа x, y и z таковы, что (x – y)(y – z)(z – x) = x + y + z. Докажите, что число x + y + z делится на 27. |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 48]
За круглым столом сидит компания из тридцати человек. Каждый из них либо дурак, либо умный. Всех сидящих спрашивают: Кто Ваш сосед справа – умный или дурак? В ответ умный говорит правду, а дурак может сказать как правду, так и ложь. Известно, что количество дураков не превосходит F . При каком наибольшем значении F всегда можно, зная эти ответы, указать на умного человека в этой компании?
Целые числа x, y и z таковы, что (x – y)(y – z)(z – x) = x + y + z. Докажите, что число x + y + z делится на 27.
Верно ли, что любые два прямоугольника равной площади можно расположить на плоскости так, что любая горизонтальная прямая, пересекающая один из них, будет пересекать и второй, причём по отрезку той же длины?
Квадратная доска разделена сеткой горизонтальных и вертикальных прямых на n² клеток со стороной 1. При каком наибольшем n можно отметить n клеток так, чтобы каждый прямоугольник площади не менее n со сторонами, идущими по линиям сетки, содержал хотя бы одну отмеченную клетку?
Назовем усреднением последовательности ak действительных чисел последовательность
a'k с общим членом a'k=
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 48]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке