|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Этапы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Дан тетраэдр ABCD. Вписанная в него сфера σ касается грани ABC в точке T. Сфера σ' касается грани ABC в точке T' и продолжений граней ABD, BCD, CAD. Докажите, что прямые AT и AT' симметричны относительно биссектрисы угла BAC. Числовое множество M, содержащее 2003 различных числа, таково, что для каждых двух различных элементов a, b из M число Пусть α , β , γ , τ – такие положительные числа, что при всех x Докажите, что α=γ или α=τ . Докажите, что 11n+2 + 122n+1 делится на 133 при любом натуральном n. Числовое множество M , содержащее 2003 различных положительных числа, таково, что для любых трех различных элементов a,b,c из M число a2+bc рационально. Докажите, что можно выбрать такое натуральное n , что для любого a из M число a Найдите наибольшее натуральное число N, для которого при произвольной расстановке различных натуральных чисел от 1 до 400 в клетках квадратной таблицы 20×20 найдутся два числа, стоящих в одной строке или одном столбце, разность которых будет не меньше N. |
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 55]
Последовательность натуральных чисел an строится следующим образом: a0 – некоторое натуральное число; an+1 = ⅕ an, если an делится на 5;
В треугольнике ABC через O, I обозначены центры описанной и вписанной окружностей соответственно. Вневписанная окружность ωa касается продолжений сторон AB и AC в точках K и M соответственно, а стороны BC – в точке N. Известно, что середина P отрезка KM лежит на описанной окружности треугольника ABC. Докажите, что точки O, N и I лежат на одной прямой.
Найдите наибольшее натуральное число N, для которого при произвольной расстановке различных натуральных чисел от 1 до 400 в клетках квадратной таблицы 20×20 найдутся два числа, стоящих в одной строке или одном столбце, разность которых будет не меньше N.
Докажите, что α=γ или α=τ .
Диагонали вписанного четырёхугольника ABCD пересекаются в точке O. Пусть описанные окружности S1 и S2 треугольников ABO и CDO второй раз пересекаются в точке K. Прямые, проходящие через точку O параллельно прямым AB и CD, вторично пересекают S1 и S2 в точках L и M соответственно. На отрезках OL и OM выбраны соответственно точки P и Q, причём OP : PL = MQ : QO. Докажите, что точки O, K, P, Q лежат на одной окружности.
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 55] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|