ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Hа плоскости проведены шесть прямых. Известно, что для любых трёх из них найдется такая четвёртая из этого же набора прямых, что все четыре будут касаться некоторой окружности. Oбязательно ли все шесть прямых касаются одной и той же окружности?

Вниз   Решение



Кузнечик вначале сидит в точке M плоскости Oxy вне квадрата  0 ≤ x ≤ 1,  0 ≤ y ≤ 1  (координаты M – нецелые, расстояние от M до центра квадрата равно d). Кузнечик прыгает в точку, симметричную M относительно самой правой (с точки зрения кузнечика) вершины квадрата. Докажите, что за несколько таких прыжков кузнечик не сможет удалиться от центра квадрата более чем на 10d.

ВверхВниз   Решение


На оборотных сторонах 2005 карточек написаны различные числа (на каждой по одному). За один вопрос разрешается указать на любые три карточки и узнать множество чисел, написанных на них. За какое наименьшее число вопросов можно узнать, какие числа записаны на каждой карточке?

Вверх   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 56]      



Задача 108225  (#05.5.10.6)

Темы:   [ Отношения линейных элементов подобных треугольников ]
[ Ортоцентр и ортотреугольник ]
[ Вписанные и описанные окружности ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 5-
Классы: 8,9

В остроугольном треугольнике проведены высоты AA' и BB'. На дуге ACB описанной окружности треугольника ABC выбрана точка D. Пусть прямые AA' и BD пересекаются в точке P, а прямые BB' и AD пересекаются в точке Q. Докажите, что прямая A'B' проходит через середину отрезка PQ.

Прислать комментарий     Решение

Задача 109828  (#05.5.10.7)

Темы:   [ Делимость чисел. Общие свойства ]
[ Разложение на множители ]
[ НОД и НОК. Взаимная простота ]
[ Деление с остатком ]
Сложность: 5-
Классы: 7,8,9,10

Натуральные числа x и y таковы, что  2x² – 1 = y15.  Докажите, что если  x > 1,  то x делится на 5.

Прислать комментарий     Решение

Задача 109829  (#05.5.10.8)

Темы:   [ Раскраски ]
[ Целочисленные решетки (прочее) ]
[ Степень вершины ]
[ Перестройки ]
[ Процессы и операции ]
Сложность: 5
Классы: 8,9,10

На бесконечном белом листе клетчатой бумаги конечное число клеток окрашено в чёрный цвет так, что у каждой чёрной клетки чётное число (0, 2 или 4) белых клеток, соседних с ней по стороне. Докажите, что каждую белую клетку можно окрасить в красный или зелёный цвет так, чтобы у каждой чёрной клетки стало поровну красных и зелёных клеток, соседних с ней по стороне.

Прислать комментарий     Решение

Задача 109816  (#05.5.11.1)

Темы:   [ Уравнения с модулями ]
[ Монотонность и ограниченность ]
[ Последовательности функций (прочее) ]
[ Упорядочивание по возрастанию (убыванию) ]
Сложность: 4
Классы: 9,10,11

Какое наибольшее конечное число корней может иметь уравнение

|x-a1|+..+|x-a50|=|x-b1|+..+|x-b50|,

где a1 , a2 , a50 , b1 , b2 , b50 – различные числа?
Прислать комментарий     Решение

Задача 109825  (#05.5.11.2)

Темы:   [ Теория алгоритмов (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Подсчет двумя способами ]
[ Процессы и операции ]
[ Оценка + пример ]
Сложность: 5-
Классы: 8,9,10,11

На оборотных сторонах 2005 карточек написаны различные числа (на каждой по одному). За один вопрос разрешается указать на любые три карточки и узнать множество чисел, написанных на них. За какое наименьшее число вопросов можно узнать, какие числа записаны на каждой карточке?
Прислать комментарий     Решение


Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 56]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .