ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Числа от 1 до 10 разбили на две группы так, что произведение чисел в первой группе нацело делится на произведение чисел во второй.
Какое наименьшее значение может быть у частного от деления первого произведения на второе?

Вниз   Решение


Докажите, что произвольный треугольник можно разрезать на три многоугольника, один из которых должен быть тупоугольным треугольником, так, чтобы потом сложить из них прямоугольник. (Переворачивать части можно).

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 55]      



Задача 110139  (#03.4.8.1)

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3+
Классы: 7,8,9

Числа от 1 до 10 разбили на две группы так, что произведение чисел в первой группе нацело делится на произведение чисел во второй.
Какое наименьшее значение может быть у частного от деления первого произведения на второе?

Прислать комментарий     Решение

Задача 110140  (#03.4.8.2)

Темы:   [ Ортогональная (прямоугольная) проекция ]
[ Задачи на движение ]
Сложность: 3+
Классы: 7,8,9,10

По каждой из двух пересекающихся прямых с постоянными скоростями, не меняя направления, ползёт по жуку. Известно, что проекции жуков на ось OX никогда не совпадают (ни в прошлом, ни в будущем). Докажите, что проекции жуков на ось OY обязательно совпадут или совпадали раньше.

Прислать комментарий     Решение

Задача 110141  (#03.4.8.3)

Тема:   [ Выигрышные и проигрышные позиции ]
Сложность: 3+
Классы: 7,8,9

Двое по очереди выписывают на доску натуральные числа от 1 до 1000. Первым ходом первый игрок выписывает на доску число 1. Затем очередным ходом на доску можно выписать либо число 2a , либо число a+1 , если на доске уже написано число a . При этом запрещается выписывать числа, которые уже написаны на доске. Выигрывает тот, кто выпишет на доску число 1000. Кто выигрывает при правильной игре?
Прислать комментарий     Решение


Задача 110142  (#03.4.8.4)

Темы:   [ Разные задачи на разрезания ]
[ Перегруппировка площадей ]
Сложность: 4
Классы: 7,8,9

Докажите, что произвольный треугольник можно разрезать на три многоугольника, один из которых должен быть тупоугольным треугольником, так, чтобы потом сложить из них прямоугольник. (Переворачивать части можно).
Прислать комментарий     Решение


Задача 110143  (#03.4.8.5)

Темы:   [ Комбинаторная геометрия (прочее) ]
[ Куб ]
[ Модуль числа (прочее) ]
[ Перебор случаев ]
Сложность: 3+
Классы: 7,8,9

В вершинах кубика написали числа от 1 до 8, а на каждом ребре – модуль разности чисел, стоящих в его концах. Какое наименьшее количество различных чисел может быть написано на ребрах?
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 55]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .