Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Докажите, что если  0 < a, b < 1,  то  

.

Вниз   Решение


Автор: Гарбер А.

У выпуклого многогранника 2n граней ( n 3 ), и все грани являются треугольниками. Какое наибольшее число вершин, в которых сходится ровно 3 ребра, может быть у такого многогранника?

ВверхВниз   Решение


Прямоугольник m×n разрезан на уголки:

Докажите, что разность между количеством уголков вида a и количеством уголков вида b делится на 3.

ВверхВниз   Решение


Окружности σ 1 и σ 2 пересекаются в точках A и B . В точке A к σ 1 и σ 2 проведены соответственно касательные l1 и l2 . Точки T1 и T2 выбраны соответственно на окружностях σ 1 и σ 2 так, что угловые меры дуг T1A и AT2 равны (величина дуги окружности считается по часовой стрелке). Касательная t1 в точке T1 к окружности σ 1 пересекает l2 в точке M1 . Аналогично, касательная t2 в точке T2 к окружности σ 2 пересекает l1 в точке M2 . Докажите, что середины отрезков M1M2 находятся на одной прямой, не зависящей от положения точек T1 , T2 .

ВверхВниз   Решение


Автор: Певзнер И.

Множество клеток на клетчатой плоскости назовем ладейно связным, если из каждой его клетки можно попасть в любую другую, двигаясь по клеткам этого множества ходом ладьи (ладье разрешается перелетать через поля, не принадлежащие нашему множеству). Докажите, что ладейно связное множество из 100 клеток можно разбить на пары клеток, лежащих в одной строке или в одном столбце.

ВверхВниз   Решение


Существует ли такое натуральное число  n > 101000,  не делящееся на 10, что в его десятичной записи можно переставить две различные ненулевые цифры так, чтобы множество его простых делителей не изменилось?

ВверхВниз   Решение


Многочлен P(x) степени n имеет n различных действительных корней. Какое наибольшее число его коэффициентов может равняться нулю?

ВверхВниз   Решение


Длины сторон многоугольника равны  a1, a2, ..., an.  Квадратный трёхчлен  f(x) таков, что  f(a1) = f(a2 + ... + an).
Докажите, что если A – сумма длин нескольких сторон многоугольника, B – сумма длин остальных его сторон, то  f(A) = f(B).

ВверхВниз   Решение


Автор: Сонкин М.

Окружность с центром O вписана в четырёхугольник ABCD и касается его непараллельных сторон BC и AD в точках E и F соответственно. Пусть прямая AO и отрезок EF пересекаются в точке K , прямая DO и отрезок EF – в точке N , а прямые BK и CN – в точке M . Докажите, что точки O , K , M и N лежат на одной окружности.

ВверхВниз   Решение


В прямоугольной таблице 9 строк и 2004 столбца. В её клетках расставлены числа от 1 до 2004, каждое – по 9 раз. При этом в каждом столбце числа различаются не более чем на 3. Найдите минимальную возможную сумму чисел в первой строке.

ВверхВниз   Решение


Существует ли такая бесконечная возрастающая арифметическая прогрессия {an} из натуральных чисел, что произведение an...an+9 делится на сумму
an +... + an+9  при любом натуральном n?

ВверхВниз   Решение


В языке жителей Банановой Республики количество слов превышает количество букв в их алфавите. Докажите, что найдется такое натуральное k , для которого можно выбрать k различных слов, в записи которых используется ровно k различных букв.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 32]      



Задача 110155  (#04.4.10.5)

Темы:   [ Свойства коэффициентов многочлена ]
[ Целочисленные и целозначные многочлены ]
[ НОД и НОК. Взаимная простота ]
[ Теорема Виета ]
[ Делимость чисел. Общие свойства ]
Сложность: 4-
Классы: 9,10,11

Уравнение  xn + a1xn–1 + ... + an–1x + an = 0  с целыми ненулевыми коэффициентами имеет n различных целых корней.
Докажите, что если каждые два корня взаимно просты, то и числа an–1 и an взаимно просты.

Прислать комментарий     Решение

Задача 110156  (#04.4.10.6)

Темы:   [ Десятичная система счисления ]
[ Перебор случаев ]
Сложность: 4
Классы: 8,9,10

Набор пятизначных чисел {N1 , Nk} таков, что любое пятизначное число, все цифры которого идут в неубывающем порядке, совпадает хотя бы в одном разряде хотя бы с одним их чисел N1 , Nk . Найдите наименьшее возможное значение k .
Прислать комментарий     Решение


Задача 110157  (#04.4.10.7)

Темы:   [ Производная и кратные корни ]
[ Гомотетия помогает решить задачу ]
[ Гомотетичные окружности ]
[ Признаки и свойства касательной ]
[ Связь величины угла с длиной дуги и хорды ]
Сложность: 5
Классы: 9,10,11

Окружности σ 1 и σ 2 пересекаются в точках A и B . В точке A к σ 1 и σ 2 проведены соответственно касательные l1 и l2 . Точки T1 и T2 выбраны соответственно на окружностях σ 1 и σ 2 так, что угловые меры дуг T1A и AT2 равны (величина дуги окружности считается по часовой стрелке). Касательная t1 в точке T1 к окружности σ 1 пересекает l2 в точке M1 . Аналогично, касательная t2 в точке T2 к окружности σ 2 пересекает l1 в точке M2 . Докажите, что середины отрезков M1M2 находятся на одной прямой, не зависящей от положения точек T1 , T2 .
Прислать комментарий     Решение


Задача 110158  (#04.4.10.8)

Темы:   [ Геометрия на клетчатой бумаге ]
[ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 6
Классы: 8,9,10

Даны натуральные числа p<k<n . На бесконечной клетчатой плоскости отмечены некоторые клетки так, что в любом прямоугольнике (k+1)×n ( n клеток по горизонтали, k+1 – по вертикали) отмечено ровно p клеток. Докажите, что существует прямоугольник k×(n+1) (где n+1 клетка по горизонтали, k – по вертикали), в котором отмечено не менее p+1 клетки.
Прислать комментарий     Решение


Задача 110147  (#04.4.11.1)

Темы:   [ Лингвистика ]
[ Процессы и операции ]
[ Теория алгоритмов (прочее) ]
[ Принцип Дирихле (прочее) ]
Сложность: 4
Классы: 8,9,10,11

В языке жителей Банановой Республики количество слов превышает количество букв в их алфавите. Докажите, что найдется такое натуральное k , для которого можно выбрать k различных слов, в записи которых используется ровно k различных букв.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 32]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .