Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Улитка должна проползти вдоль линий клетчатой бумаги путь длины 2n, начав и кончив свой путь в данном узле.
Доказать, что число различных её маршрутов равно  

Вниз   Решение


Доказать, что в трапеции сумма углов при меньшем основании больше, чем при большем.

ВверхВниз   Решение


Докажите неравенство для натуральных  n > 1:  

ВверхВниз   Решение


Дан четырёхугольник ABCD. Оказалось, что описанная окружность треугольника ABC, касается стороны CD, а описанная окружность треугольника ACD касается стороны AB. Докажите, что диагональ AC меньше, чем расстояние между серединами сторон AB и CD.

ВверхВниз   Решение


Докажите неравенство   nn+1 > (n + 1)n  для натуральных  n > 2.

ВверхВниз   Решение


Выпуклый многоугольник обладает следующим свойством: если все прямые, на которых лежат его стороны, параллельно перенести на расстояние 1 во внешнюю сторону, то полученные прямые образуют многоугольник, подобный исходному, причём параллельные стороны окажутся пропорциональными. Доказать, что в данный многоугольник можно вписать окружность.

ВверхВниз   Решение


Даны числа $ \alpha_{1}$,$ \alpha_{2}$,...,$ \alpha_{k}$, причём для всех натуральных нечётных n имеет место равенство

$\displaystyle \alpha_{1}^{n}$ + $\displaystyle \alpha_{2}^{n}$ + ... + $\displaystyle \alpha_{k}^{n}$ = 0.

Доказать, что те из чисел $ \alpha_{1}$,$ \alpha_{2}$,...,$ \alpha_{k}$, которые не равны нулю, можно разбить на пары таким образом, чтобы два числа, входящие в одну и ту же пару, были бы равны по абсолютной величине, но противоположны по знаку.

ВверхВниз   Решение


Точки E, F – середины сторон BC, CD квадрата ABCD. Прямые AE и BF пересекаются в точке P. Докажите, что  ∠PDA = ∠AED.

ВверхВниз   Решение


В стакане находятся бактерии. Через секунду каждая из бактерий делится пополам, затем каждая из получившихся бактерий через секунду делится пополам и так далее. Через минуту стакан полон. Через какое время стакан был заполнен наполовину?

ВверхВниз   Решение


На плоскости даны три параллельные прямые.
Найдите геометрическое место центров вписанных окружностей треугольников, вершины которых расположены (по одной) на этих прямых.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



Задача 115872  (#16)

Темы:   [ Теоремы Чевы и Менелая ]
[ Отношение, в котором биссектриса делит сторону ]
Сложность: 4
Классы: 8,9,10,11

Три прямые проходят через точку O и образуют попарно равные углы. На одной из них взяты точки A1, A2, на другой – B1, B2, так что точка C1 пересечения прямых A1B1 и A2B2 лежит на третьей прямой. Пусть C2 – точка пересечения A1B2 и A2B1. Докажите, что угол C1OC2 прямой.

Прислать комментарий     Решение

Задача 115873  (#17)

Темы:   [ Вписанные и описанные окружности ]
[ Три прямые, пересекающиеся в одной точке ]
[ Прямая Симсона ]
[ Теорема Карно ]
Сложность: 5-
Классы: 8,9,10,11

Дан треугольник ABC и точки X, Y, не лежащие на его описанной окружности Ω. Пусть A1, B1, C1 – проекции X на BC, CA, AB, а A2, B2, C2 – проекции Y. Докажите, что перпендикуляры, опущенные из A1, B1, C1 на, соответственно, B2C2, C2A2, A2B2, пересекаются в одной точке тогда и только тогда, когда прямая XY проходит через центр Ω.

Прислать комментарий     Решение

Задача 115874  (#18)

Темы:   [ Вписанные и описанные окружности ]
[ ГМТ с ненулевой площадью ]
[ Соображения непрерывности ]
Сложность: 4
Классы: 8,9,10,11

На плоскости даны три параллельные прямые.
Найдите геометрическое место центров вписанных окружностей треугольников, вершины которых расположены (по одной) на этих прямых.

Прислать комментарий     Решение

Задача 115875  (#19)

Темы:   [ Прямые и кривые, делящие фигуры на равновеликие части ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4+
Классы: 8,9,10,11

Дан выпуклый n-угольник A1...An. Пусть Pi  (i = 1, ..., n)  – такая точка на его границе, что прямая AiPi делит его площадь пополам. Известно, что все точки Pi не совпадают с вершинами и лежат на k сторонах n-угольника. Каково  а) наименьшее;  б) наибольшее возможное значение k при каждом данном n?

Прислать комментарий     Решение

Задача 115877  (#20)

Темы:   [ Ортоцентр и ортотреугольник ]
[ Вписанные и описанные окружности ]
[ Четыре точки, лежащие на одной окружности ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
Сложность: 4
Классы: 8,9,10,11

В остроугольном треугольнике ABC точка H – ортоцентр, O – центр описанной окружности, AA1, BB1 и CC1 – высоты. Точка C2 симметрична C относительно A1B1. Докажите, что H, O, C1 и C2 лежат на одной окружности.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .