Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
год/номер:
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Придумайте раскраску граней кубика, чтобы в трёх различных положениях он выглядел, как показано на рисунке. (Укажите, как раскрасить невидимые грани, или нарисуйте развёртку.)

Вниз   Решение


В треугольнике ABC точка M – середина стороны BC, AA1, BB1 и CC1 – высоты. Прямые AB и A1B1 пересекаются в точке X, а прямые MC1 и AC – в точке Y. Докажите, что  XY || BC .

ВверхВниз   Решение


На стороне AC треугольника ABC выбрана точка X . Докажите, что если вписанные окружности треугольников ABX и BCX касаются друг друга, то точка X лежит на окружности, вписанной в треугольник ABC .

ВверхВниз   Решение


Назовём натуральное семизначное число удачным, если оно делится на произведение всех своих цифр. Существуют ли четыре последовательных удачных числа?

ВверхВниз   Решение


В прямоугольном треугольнике ABC гипотенуза AB=c , A = α . Найдите радиус окружности, касающейся катета AC , гипотенузы AB и окружности, описанной около треугольника ABC .

ВверхВниз   Решение


109 яблок разложены по пакетам. В некоторых пакетах лежит по x яблок, в других – по три яблока.
Найдите все возможные значения x, если всего пакетов – 20.

ВверхВниз   Решение


Сумасшедший кассир меняет любые две монеты на любые три по вашему выбору, а любые три – на любые две. Сможет ли Петя обменять у него 100 монет достоинством 1 рубль на 100 монет достоинством 1 форинт, отдав ему при обмене ровно 2001 монету?

ВверхВниз   Решение


Даны десять положительных чисел, каждые два из которых различны. Докажите, что среди них найдутся либо три числа, произведение которых больше произведения каких-нибудь двух из оставшихся, либо три числа, произведение которых больше произведения каких-нибудь четырёх из оставшихся.

ВверхВниз   Решение


Сторона основания ABC пирамиды TABC равна 4, боковое ребро TA перпендикулярно плоскости основания. Найдите площадь сечения пирамиды плоскостью, проходящей через середины рёбер AC и BT параллельно медиане BD грани BCT , если известно, что расстояние от вершины T до этой плоскости равно .

ВверхВниз   Решение


Один треугольник лежит внутри другого.
Докажите, что хотя бы одна из двух наименьших сторон (из шести) является стороной внутреннего треугольника.

ВверхВниз   Решение


Автор: Фольклор

Найдите x 3 + y3, если известно, что x + y = 5 и x + y + x2y + xy2 = 24.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 557]      



Задача 86485

Темы:   [ Наглядная геометрия в пространстве ]
[ Боковая поверхность параллелепипеда ]
Сложность: 2
Классы: 7,8

Куб сложен из 27 одинаковых кубиков (см. рис.). Сравните площадь поверхности этого куба и площадь поверхности фигуры, которая получится, если из него вынуть все "угловые" кубики.

Прислать комментарий     Решение

Задача 86491

Темы:   [ Равногранный тетраэдр ]
[ Боковая поверхность тетраэдра и пирамиды ]
Сложность: 2
Классы: 10,11

Дана пирамида АВСD (см. рис.). Известно, что
$ \triangle$ADB = $ \triangle$DBC;
$ \triangle$ABD = $ \triangle$BDC;
$ \triangle$BAD = $ \triangle$ABC.
Найдите площадь поверхности пирамиды (сумму площадей четырех треугольников), если площадь треугольника АВС равна 10 см2.

Прислать комментарий     Решение

Задача 86496

Тема:   [ Неравенства с модулями ]
Сложность: 2
Классы: 8,9

Решите неравенство:
|x + 2000| < |x - 2001|.
Прислать комментарий     Решение


Задача 86509

Темы:   [ Подобные фигуры ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 2
Классы: 8,9

Являются ли подобными два прямоугольника: картина в рамке и картина без рамки, если ширина рамки всюду одинакова (см. рис.)?

Прислать комментарий     Решение

Задача 115962

Тема:   [ Формулы сокращенного умножения ]
Сложность: 2
Классы: 7,8,9

Автор: Фольклор

Найдите x 3 + y3, если известно, что x + y = 5 и x + y + x2y + xy2 = 24.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 557]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .