Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Постройте график. Постройте график функции y = 3x + |5x − 10|.

Вниз   Решение


ABCDE — правильный пятиугольник. Tочка B' симметрична точке B относительно прямой AC (см. рисунок). Mожно ли пятиугольниками, равными AB'CDE, замостить плоскость?

ВверхВниз   Решение


Дан остроугольный треугольник ABC. Прямая, параллельная BC, пересекает стороны AB и AC в точках M и P соответственно. При каком расположении точек M и P радиус окружности, описанной около треугольника BMP, будет наименьшим?

ВверхВниз   Решение


Автор: Перлин А.

У каждого из жителей города N знакомые составляют не менее 30 населения города. Житель идет на выборы, если баллотируется хотя бы один из его знакомых. Докажите, что можно так провести выборы мэра города N из двух кандидатов, что в них примет участие не менее половины жителей.

ВверхВниз   Решение


а) В треугольнике ABC, длины сторон которого рациональные числа, проведена высота BB1. Докажите, что длины отрезков AB1 и CB1 — рациональные числа.
б) Длины сторон и диагоналей выпуклого четырехугольника — рациональные числа. Докажите, что диагонали разрезают его на четыре треугольника, длины сторон которых — рациональные числа.

ВверхВниз   Решение


Автор: Фольклор

Даны два двузначных числа – X и Y. Известно, что X вдвое больше Y, одна цифра числа Y равна сумме, а другая – разности цифр числа X.
Найти эти числа.

ВверхВниз   Решение


В 12 часов дня "Запорожец" и "Москвич" находились на расстоянии 90 км и начали двигаться навстречу друг другу с постоянной скоростью. Через два часа они снова оказались на расстоянии 90 км. Незнайка утверждает, что "Запорожец" до встречи с "Москвичом" и "Москвич" после встречи с "Запорожцем" проехали в сумме 60 км. Докажите, что он неправ.

ВверхВниз   Решение


Автор: Фольклор

В шестиугольнике пять углов по 90°, а один угол — 270° (см. рисунок). C помощью линейки без делений разделите его на два равновеликих многоугольника.

Вверх   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 12]      



Задача 116184

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Прямые и кривые, делящие фигуры на равновеликие части ]
Сложность: 2+
Классы: 8,9

Автор: Фольклор

В шестиугольнике пять углов по 90°, а один угол — 270° (см. рисунок). C помощью линейки без делений разделите его на два равновеликих многоугольника.

Прислать комментарий     Решение

Задача 116185

Темы:   [ Признаки и свойства параллелограмма ]
[ Равные треугольники. Признаки равенства (прочее) ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 2+
Классы: 8,9

Дан параллелограм ABCD. Прямая, параллельная AB, пересекает биссектрисы углов A и C в точках P и Q соответственно.
Докажите, что углы ADP и ABQ равны.

Прислать комментарий     Решение

Задача 116190

Темы:   [ Теорема синусов ]
[ Экстремальные точки треугольника ]
Сложность: 2+
Классы: 10,11

Дан остроугольный треугольник ABC. Прямая, параллельная BC, пересекает стороны AB и AC в точках M и P соответственно. При каком расположении точек M и P радиус окружности, описанной около треугольника BMP, будет наименьшим?

Прислать комментарий     Решение

Задача 116192

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Пятиугольники ]
[ Замощения костями домино и плитками ]
[ Комбинаторная геометрия (прочее) ]
Сложность: 3
Классы: 10,11

ABCDE — правильный пятиугольник. Tочка B' симметрична точке B относительно прямой AC (см. рисунок). Mожно ли пятиугольниками, равными AB'CDE, замостить плоскость?

Прислать комментарий     Решение

Задача 116186

Темы:   [ Векторы помогают решить задачу ]
[ Неравенства с векторами ]
[ Неравенство треугольника (прочее) ]
[ Параллелограммы (прочее) ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC на стороне AB выбраны точки K и L так, что AK = BL, а на стороне BC — точки M и N так, что CN = BM. Докажите, что KN + LMAC.

Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 12]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .