ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Ивлев Ф.

Пусть I – центр вписанной окружности неравнобедренного треугольника ABC. Через A1 обозначим середину дуги BC описанной окружности треугольника ABC, не содержащей точки A, а через A2 – середину дуги BAC. Перпендикуляр, опущенный из точки A1 на прямую A2I, пересекает прямую BC в точке A'. Аналогично определяются точки B' и C'.
  а) Докажите, что точки A', B' и C' лежат на одной прямой.
  б) Докажите, что эта прямая перпендикулярна прямой OI, где O – центр описанной окружности треугольника ABC.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 [Всего задач: 29]      



Задача 116248  (#6)

Темы:   [ Вписанные и описанные окружности ]
[ Радикальная ось ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 5
Классы: 9,10,11

Автор: Ивлев Ф.

Пусть I – центр вписанной окружности неравнобедренного треугольника ABC. Через A1 обозначим середину дуги BC описанной окружности треугольника ABC, не содержащей точки A, а через A2 – середину дуги BAC. Перпендикуляр, опущенный из точки A1 на прямую A2I, пересекает прямую BC в точке A'. Аналогично определяются точки B' и C'.
  а) Докажите, что точки A', B' и C' лежат на одной прямой.
  б) Докажите, что эта прямая перпендикулярна прямой OI, где O – центр описанной окружности треугольника ABC.

Прислать комментарий     Решение

Задача 32896  (#6)

Темы:   [ Принцип Дирихле (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Индукция (прочее) ]
[ Кооперативные алгоритмы ]
[ Оценка + пример ]
Сложность: 4
Классы: 7,8,9,10

Автор: Нетай И.В.

Сто мудрецов хотят проехать на электричке из 12 вагонов от первой до 76-й станции. Они знают, что на первой станции в два вагона электрички сядут два контролёра. После четвёртой станции на каждом перегоне один из контролёров будет переходить в соседний вагон, причём они "ходят" по очереди. Мудрец видит контролёра, только если он в соседнем вагоне или через вагон. На каждой станции каждый мудрец может перебежать по платформе не далее чем на три вагона (например, из 7-го вагона мудрец может добежать до любого вагона с номером от 4 до 10 и сесть в него). Какое максимальное число мудрецов сможет ни разу не оказаться в одном вагоне с контролёром, как бы контролёры ни перемещались? (Никакой информации о контролёрах, кроме указанной в задаче, мудрец не получает. Мудрецы договариваются о стратегии заранее.)

Прислать комментарий     Решение

Задача 32890  (#6)

Темы:   [ Выигрышные и проигрышные позиции ]
[ Простые числа и их свойства ]
Сложность: 4
Классы: 7,8,9

На доске записано целое положительное число N. Два игрока ходят по очереди. За ход разрешается либо заменить число на доске на один из его делителей (отличных от единицы и самого числа), либо уменьшить число на единицу (если при этом число остается положительным). Тот, кто не может сделать ход, проигрывает. При каких N первый игрок может выиграть, как бы ни играл соперник?

Прислать комментарий     Решение

Задача 116252  (#6)

Темы:   [ Турниры и турнирные таблицы ]
[ Доказательство от противного ]
[ Принцип Дирихле (прочее) ]
[ Арифметическая прогрессия ]
[ Соображения непрерывности ]
Сложность: 5-
Классы: 8,9

Две команды шахматистов одинаковой численности сыграли матч: каждый сыграл по одному разу с каждым из другой команды. В каждой партии давали 1 очко за победу, ½ – за ничью и 0 – за поражение. В итоге команды набрали поровну очков. Докажите, что какие-то два участника матча тоже набрали поровну очков, если в обеих командах было:
  а) по 5 шахматистов;
  б) произвольное равное число шахматистов.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 [Всего задач: 29]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .