Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Квадрат n×n ( n 3 ) склеен в цилиндр. Часть клеток покрашена в черный цвет. Докажите, что найдутся две параллельных линии (две горизонтали, две вертикали или две диагонали), содержащие одинаковое количество черных клеток.

Вниз   Решение


Точку внутри треугольника назовём хорошей, если длины проходящих через неё чевиан обратно пропорциональны длинам соответствующих сторон. Найдите все треугольники, для которых число хороших точек – максимально возможное.

ВверхВниз   Решение


Найдите объём правильной шестиугольной пирамиды со стороной основания a и высотой h .

ВверхВниз   Решение


Пусть M и I – точки пересечения медиан и биссектрис неравнобедренного треугольника ABC, а r – радиус вписанной в него окружности.
Докажите, что  MI = r/3  тогда и только тогда, когда прямая MI перпендикулярна одной из сторон треугольника.

ВверхВниз   Решение


При каких n можно оклеить в один слой поверхность клетчатого куба n×n×n бумажными прямоугольниками 1×2 так, чтобы каждый прямоугольник граничил по отрезкам сторон ровно с пятью другими?

ВверхВниз   Решение


В остроугольном треугольнике проведены высоты AA' и BB'. На дуге ACB описанной окружности треугольника ABC выбрана точка D. Пусть прямые AA' и BD пересекаются в точке P, а прямые BB' и AD пересекаются в точке Q. Докажите, что прямая A'B' проходит через середину отрезка PQ.

ВверхВниз   Решение


В неравнобедренном остроугольном треугольнике ABC точки C0 и B0 – середины сторон AB и AC соответственно, O – центр описанной окружности, H – точка пересечения высот. Прямые BH и OC0 пересекаются в точке P, а прямые CH и OB0 – в точке Q. Оказалось, что четырёхугольник OPHQ – ромб. Докажите, что точки A, P и Q лежат на одной прямой.

ВверхВниз   Решение


Десять попарно различных ненулевых чисел таковы, что для каждых двух из них либо сумма этих чисел, либо их произведение – рациональное число.
Докажите, что квадраты всех чисел рациональны.

ВверхВниз   Решение


Найдите объём правильной шестиугольной пирамиды со стороной основания a и углом β боковой грани с плоскостью основания.

ВверхВниз   Решение


Найдите объём правильной четырёхугольной пирамиды с боковым ребром b и углом β боковой грани с плоскостью основания.

ВверхВниз   Решение


Сколькими способами числа 20, 21, 2², ..., 22005 можно разбить на два непустых множества A и B так, чтобы уравнение  x² – S(A)x + S(B) = 0,  где S(M) – сумма чисел множества M, имело целый корень?

ВверхВниз   Решение


Дан квадрат. Найдите геометрическое место середин гипотенуз прямоугольных треугольников, вершины которых лежат на попарно различных сторонах квадрата и не совпадают с его вершинами.

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 48]      



Задача 116911  (#10.1)

Темы:   [ Замощения костями домино и плитками ]
[ Четность и нечетность ]
[ Примеры и контрпримеры. Конструкции ]
[ Степень вершины ]
Сложность: 3
Классы: 9,10

При каких n можно оклеить в один слой поверхность клетчатого куба n×n×n бумажными прямоугольниками 1×2 так, чтобы каждый прямоугольник граничил по отрезкам сторон ровно с пятью другими?

Прислать комментарий     Решение

Задача 116912  (#10.2)

Темы:   [ Замечательные точки и линии в треугольнике (прочее) ]
[ Ортоцентр и ортотреугольник ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 4
Классы: 9,10

Точку внутри треугольника назовём хорошей, если длины проходящих через неё чевиан обратно пропорциональны длинам соответствующих сторон. Найдите все треугольники, для которых число хороших точек – максимально возможное.

Прислать комментарий     Решение

Задача 116913  (#10.3)

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Взаимное расположение высот, медиан, биссектрис и проч. ]
[ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Гомотетия помогает решить задачу ]
[ Точка Нагеля. Прямая Нагеля ]
[ Длины сторон, высот, медиан и биссектрис ]
[ Формулы для площади треугольника ]
[ Момент инерции ]
Сложность: 5-
Классы: 9,10

Пусть M и I – точки пересечения медиан и биссектрис неравнобедренного треугольника ABC, а r – радиус вписанной в него окружности.
Докажите, что  MI = r/3  тогда и только тогда, когда прямая MI перпендикулярна одной из сторон треугольника.

Прислать комментарий     Решение

Задача 116914  (#10.4)

Темы:   [ ГМТ (прочее) ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Вписанный угол, опирающийся на диаметр ]
[ Кривые второго порядка ]
Сложность: 4+
Классы: 9,10

Дан квадрат. Найдите геометрическое место середин гипотенуз прямоугольных треугольников, вершины которых лежат на попарно различных сторонах квадрата и не совпадают с его вершинами.

Прислать комментарий     Решение

Задача 116915  (#10.5)

Темы:   [ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Экстремальные свойства окружности и криволинейных фигур ]
Сложность: 3+
Классы: 9,10

Автор: Нилов Ф.

В окружность Ω вписан четырёхугольник ABCD, диагонали AC и BD которого перпендикулярны. На сторонах AB и CD во внешнюю сторону как на диаметрах построены дуги α и β. Рассмотрим две луночки, образованные окружностью Ω и дугами α и β (см. рис.). Докажите, что максимальные радиусы окружностей, вписанных в эти луночки, равны.

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 48]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .