Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

Существует ли такой четырёхугольник, что любая диагональ делит его на два тупоугольных треугольника?

Вниз   Решение


20 команд сыграли круговой турнир по волейболу.
Докажите, что команды можно занумеровать числами от 1 до 20 так, что 1-я команда выиграла у 2-й, 2-я – у 3-й, ..., 19-я – у 20-й.

ВверхВниз   Решение


Известно, что число 2333 имеет 101 цифру и начинается с цифры 1. Сколько чисел в ряду 2, 4, 8, 16, ..., 2333 начинается с цифры 4?

ВверхВниз   Решение


Автор: Белухов Н.

Даны два единичных куба с общим центром. Всегда ли можно занумеровать вершины каждого из кубов от $1$ до $8$ так, чтобы расстояние между любыми двумя вершинами с одинаковыми номерами не превышало $\frac{4}{5}$? А чтобы не превышало $\frac{13}{16}$?

ВверхВниз   Решение


а) Из какого минимального числа кусков проволоки можно спаять каркас куба?
б) Какой максимальной длины кусок проволоки можно вырезать из этого каркаса? (Длина ребра куба равна 1 см.)

ВверхВниз   Решение


Докажите, что при любых x, y, z выполнено неравенство: x4 + y4 + z² + 1 ≥ 2x(xy² – x + z + 1).

ВверхВниз   Решение


Окружности S1 и S2 пересекаются в точках A и B, причем центр O окружности S1 лежит на S2. Прямая, проходящая через точку O, пересекает отрезок AB в точке P, а окружность S2 в точке C. Докажите, что точка P лежит на поляре точки C относительно окружности S1.

ВверхВниз   Решение


Точка K – середина стороны AB квадрата ABCD, а точка L делит диагональ AC в отношении  AL : LC = 3 : 1.  Докажите, что угол KLD прямой.

ВверхВниз   Решение


Найти все многочлены P(x), для которых справедливо тождество:  xP(x – 1) ≡ (x – 26)P(x).

ВверхВниз   Решение


Известно, что значения выражений b/a и b/c находятся в интервале  (–0,9, –0,8).  В каком интервале лежат значения выражения c/a?

ВверхВниз   Решение


Можно ли построить три дома, вырыть три колодца и соединить тропинками каждый дом с каждым колодцем так, чтобы тропинки не пересекались?

ВверхВниз   Решение


Можно ли разрезать квадрат 5×5 на прямоугольники двух видов: 1×4 и 1×3 так, чтобы получилось 7 прямоугольников?

ВверхВниз   Решение


а) Докажите, что середины четырех общих касательных к двум непересекающимся кругам лежат на одной прямой.
б) Через две из точек касания общих внешних касательных с двумя окружностями проведена прямая. Докажите, что окружности высекают на этой прямой равные хорды.

ВверхВниз   Решение


Докажите, что  x² + y² + z² ≥ xy + yz + zx  при любых x, y, z.

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 83]      



Задача 30864  (#021)

Тема:   [ Неравенство Коши ]
Сложность: 2+
Классы: 7,8

Докажите, что     при x, y > 0.

Прислать комментарий     Решение

Задача 30865  (#022)

Темы:   [ Неравенство Коши ]
[ Квадратичные неравенства (несколько переменных) ]
Сложность: 2+
Классы: 8,9,10

Докажите, что  x² + y² + z² ≥ xy + yz + zx  при любых x, y, z.

Прислать комментарий     Решение

Задача 30866  (#023)

Темы:   [ Неравенство Коши ]
[ Алгебраические неравенства (прочее) ]
Сложность: 3+
Классы: 8,9

a, b, c ≥ 0.  Докажите, что  (a + b)(a + c)(b + c) ≥ 8abc.

Прислать комментарий     Решение

Задача 30867  (#024)

Тема:   [ Неравенство Коши ]
Сложность: 3
Классы: 9

a, b, c ≥ 0.  Докажите, что   .

Прислать комментарий     Решение

Задача 30868  (#025)

Тема:   [ Неравенство Коши ]
Сложность: 3
Классы: 8,9

Докажите, что  x² + y² + 1 ≥ xy + x + y  при любых x и y.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 83]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .