Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

α, β и γ - углы треугольника ABC. Докажите, что
а)  sin2$ \alpha$ + sin2$ \beta$ + sin2$ \gamma$ = (p2 - r2 - 4rR)/2R2.
б)  4R2cos$ \alpha$cos$ \beta$cos$ \gamma$ = p2 - (2R + r)2.

Вниз   Решение


α, β и γ - углы треугольника ABC. Докажите, что
а)  cos($ \alpha$/2)sin($ \beta$/2)sin($ \gamma$/2) = (p - a)/4R;
б)  sin($ \alpha$/2)cos($ \beta$/2)cos($ \gamma$/2) = ra/4R.

ВверхВниз   Решение


а)  ctg($ \alpha$/2) + ctg($ \beta$/2) + ctg($ \gamma$/2) $ \geq$ 3$ \sqrt{3}$.
б) Для остроугольного треугольника

tg$\displaystyle \alpha$ + tg$\displaystyle \beta$ + tg$\displaystyle \gamma$ $\displaystyle \geq$ 3$\displaystyle \sqrt{3}$.


ВверхВниз   Решение


а)  sin$ \alpha$sin$ \beta$sin$ \gamma$ $ \leq$ 3$ \sqrt{3}$/8;
б)  cos($ \alpha$/2)cos($ \beta$/2)cos($ \gamma$/2) $ \leq$ 3$ \sqrt{3}$/8.

ВверхВниз   Решение


Докажите тождество: 1 . 2 . 3 + 2 . 3 . 4 +...+ n(n + 1)(n + 2) = $\displaystyle {\textstyle\frac{1}{4}}$n(n + 1)(n + 2)(n + 3).

ВверхВниз   Решение


Докажите, что любое движение второго рода является скользящей симметрией.

ВверхВниз   Решение


Докажите, что любое движение первого рода является поворотом или параллельным переносом.

ВверхВниз   Решение


Дан треугольник ABC. Докажите, что композиция симметрий S = SACoSABoSBC является скользящей симметрией, для которой вектор переноса имеет длину 2R sin$ \alpha$sin$ \beta$sin$ \gamma$, где R — радиус описанной окружности, $ \alpha$, $ \beta$, $ \gamma$ — углы данного треугольника.

ВверхВниз   Решение


Даны окружность S, точка P, расположенная вне S, и прямая l, проходящая через P и пересекающая окружность в точках A и B. Точку пересечения касательных к окружности в точках A и B обозначим через K.
а) Рассмотрим всевозможные прямые, проходящие через P и пересекающие AK и BK в точках M и N. Докажите, что геометрическим местом точек пересечения отличных от AK и BK касательных к S, проведенных из точек M и N, является некоторая прямая, проходящая через K, из которой выкинуто ее пересечение с внутренностью S.
б) Будем на окружности разными способами выбирать точку R и проводить прямую, соединяющую отличные от R точки пересечения прямых RK и RP с S. Докажите, что все полученные прямые проходят через одну точку, и эта точка лежит на l.

ВверхВниз   Решение


Докажите, что

\begin{multline*}
h_a=2(p-a)\cos(\beta /2)\cos(\gamma /2)/\cos(\alpha /2)=\\
=2(p-b)\sin(\beta /2)\cos(\gamma /2)/\sin(\alpha /2).
\end{multline*}


ВверхВниз   Решение


α, β и γ - углы треугольника ABC. Докажите, что
tg$ \alpha$ + tg$ \beta$ + tg$ \gamma$ = tg$ \alpha$tg$ \beta$tg$ \gamma$.

ВверхВниз   Решение


Доказать, что  a2n+1 + (a – 1)n+2  делится на  a² – a + 1  (a – целое, n – натуральное).

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 42]      



Задача 31266  (#36)

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 2+
Классы: 6,7,8

Найти   a) 3 последние цифры;   б) 6 последних цифр числа  1999 + 2999 + ... + (106 – 1)999.

Прислать комментарий     Решение

Задача 31267  (#37)

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 6,7,8

Доказать, что  a2n+1 + (a – 1)n+2  делится на  a² – a + 1  (a – целое, n – натуральное).

Прислать комментарий     Решение

Задача 31268  (#38)

Темы:   [ Арифметика остатков (прочее) ]
[ Простые числа и их свойства ]
[ Делимость чисел. Общие свойства ]
Сложность: 2+
Классы: 6,7,8

p и q – простые числа, большие 3. Доказать, что  p² – q²  делится на 24.

Прислать комментарий     Решение

Задача 31269  (#39)

Темы:   [ Арифметика остатков (прочее) ]
[ Произведения и факториалы ]
Сложность: 3
Классы: 6,7,8

Может ли  m! + n!  оканчиваться на 1990?

Прислать комментарий     Решение

Задача 31270  (#40)

Темы:   [ Арифметика остатков (прочее) ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 6,7,8

Доказать, что  n² + 5n + 16  не делится на 169 ни при каком натуральном n.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 42]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .