ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На сторонах AB, BC, CD и DA выпуклого четырёхугольника ABCD отметили точки E, F, G, H соответственно.
Докажите, что описанные круги треугольников HAE, EBF, FCG и GDH покрывают четырёхугольник ABCD целиком.

   Решение

Задачи

Страница: << 170 171 172 173 174 175 176 >> [Всего задач: 7526]      



Задача 35056

Темы:   [ Системы точек и отрезков (прочее) ]
[ Процессы и операции ]
[ Полуинварианты ]
Сложность: 3
Классы: 8,9,10

На плоскости даны 10 точек: несколько из них – белые, а остальные – чёрные. Некоторые точки соединены отрезками. Назовём точку особой, если более половины соединенных с ней точек имеют цвет, отличный от её цвета. Каждым ходом выбирается одна из особых точек (если такие есть) и перекрашивается в противоположный цвет. Докажите, что через несколько ходов не останется ни одной особой точки.

Прислать комментарий     Решение

Задача 35065

Темы:   [ Вычисление площадей ]
[ Перегруппировка площадей ]
[ Выпуклые многоугольники ]
[ Сумма внутренних и внешних углов многоугольника ]
Сложность: 3
Классы: 8,9,10,11

На листе бумаги нарисован выпуклый многоугольник M периметра P и площади S. Закрасили каждый круг радиуса R с центром в каждой точке, лежащей внутри этого многоугольника. Найдите площадь закрашенной фигуры.

Прислать комментарий     Решение

Задача 35070

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Покрытия ]
[ Принцип Дирихле (углы и длины) ]
Сложность: 3
Классы: 8,9

На сторонах AB, BC, CD и DA выпуклого четырёхугольника ABCD отметили точки E, F, G, H соответственно.
Докажите, что описанные круги треугольников HAE, EBF, FCG и GDH покрывают четырёхугольник ABCD целиком.

Прислать комментарий     Решение

Задача 35071

Темы:   [ НОД и НОК. Взаимная простота ]
[ Правило произведения ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Количество и сумма делителей числа ]
[ Перебор случаев ]
Сложность: 3
Классы: 8,9

Сколько существует пар натуральных чисел, у которых наименьшее общее кратное (НОК) равно 2000?

Прислать комментарий     Решение

Задача 35081

Темы:   [ Математическая логика (прочее) ]
[ Индукция (прочее) ]
Сложность: 3
Классы: 8,9,10

Двум гениям сообщили по натуральному числу и сказали, что эти числа отличаются на 1. После этого они по очереди задают друг другу один и тот же вопрос: "Знаешь ли ты мое число?". Докажите, что рано или поздно один из них ответит положительно.

Прислать комментарий     Решение

Страница: << 170 171 172 173 174 175 176 >> [Всего задач: 7526]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .