Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 16 задач
Версия для печати
Убрать все задачи

Докажите, что если в выпуклом шестиугольнике каждая из трех диагоналей, соединяющих противоположные вершины, делит площадь пополам, то эти диагонали пересекаются в одной точке.

Вниз   Решение


Известно, что в выпуклом n-угольнике  (n > 3)  никакие три диагонали не проходят через одну точку.
Найдите число точек (отличных от вершины) пересечения пар диагоналей.

ВверхВниз   Решение


Докажите равенство

$\displaystyle {\frac{2}{\pi}}$ = $\displaystyle \sqrt{\frac{1}{2}}$ . $\displaystyle \sqrt{\frac{1}{2}+\frac{1}{2}
\sqrt{\frac{1}{2}}}$ . $\displaystyle \sqrt{\frac{1}{2}+\frac{1}{2}
\sqrt{\frac{1}{2}+\frac{1}{2}
\sqrt{\frac{1}{2}}}}$...


ВверхВниз   Решение


Дана клетчатая доска размером  а) 10×12;  б) 9×10;  в) 9×11. За ход разрешается вычеркнуть любую строку или любой столбец, если там есть хотя бы одна не вычеркнутая клетка. Проигрывает тот, кто не может сделать ход. Есть ли у кого-нибудь выигрышная стратегия?

ВверхВниз   Решение


Доказать, что при любом целом положительном n сумма     больше ½.

ВверхВниз   Решение


Сколько клеток пересекает диагональ в клетчатом прямоугольнике размерами 199 × 991?

ВверхВниз   Решение


Найдите остаток от деления 2100 на 101.

ВверхВниз   Решение


В вершинах 100-угольника расставлены числа так, что каждое равно среднему арифметическому своих соседей. Докажите, что все они равны.

ВверхВниз   Решение


Докажите, что на координатной плоскости можно провести окружность, внутри которой лежит ровно n целочисленных точек.

ВверхВниз   Решение


Докажите, что все числа ряда являются составными.

ВверхВниз   Решение


Несколько стеклянных шариков разложено в три кучки. Мальчик, располагающий неограниченным запасом шариков, может за один ход взять по одному шарику из каждой кучки или же добавить из своего запаса в одну из кучек столько шариков, сколько в ней уже есть. Доказать, что за несколько ходов мальчик может добиться того, что в каждой кучке не останется ни одного шарика.

ВверхВниз   Решение


План города имеет схему, представляющую собой прямоугольник 5×10 клеток. На улицах введено одностороннее движение: разрешается ехать только вправо и вверх. Сколько есть различных маршрутов, ведущих из левого нижнего угла в правый верхний?

ВверхВниз   Решение


Докажите, что  .

ВверхВниз   Решение


а) Докажите, что если  a + ha = b + hb = c + hc, то треугольник ABC правильный.
б) В треугольник ABC вписаны три квадрата: у одного две вершины лежат на стороне AC, у другого — на BC, у третьего — на AB. Докажите, что если все три квадрата равны, то треугольник ABC правильный.

ВверхВниз   Решение


Автор: Ивлев Ф.

Дан прямоугольный треугольник ABC. Пусть M – середина гипотенузы AB, O – центр описанной окружности ω треугольника CMB. Прямая AC вторично пересекает окружность ω в точке K. Прямая KO пересекает описанную окружность треугольника ABC в точке L. Докажите, что прямые AL и KM пересекаются на описанной окружности треугольника ACM.

ВверхВниз   Решение


На плоскости нарисовано пять различных окружностей. Известно, что каждые четыре из них имеют общую точку.
Докажите, что все пять окружностей проходят через одну точку.

Вверх   Решение

Задачи

Страница: << 107 108 109 110 111 112 113 >> [Всего задач: 7526]      



Задача 35383

Темы:   [ Уравнения в целых числах ]
[ Десятичная система счисления ]
Сложность: 3-
Классы: 7,8

а) В трёхзначном числе зачеркнули первую цифру слева, затем полученное двузначное число умножили на 7 и получили исходное трёхзначное число. Найдите такое число.
б) В трёхзначном числе зачеркнули среднюю цифру и получили число в 6 раз меньше исходного. Найдите такое трёхзначное число.

Прислать комментарий     Решение

Задача 35387

Тема:   [ Наглядная геометрия в пространстве ]
Сложность: 3-
Классы: 7,8,9

Из полоски бумаги шириной 1 см склеили цилиндрическое кольцо с длиной окружности 4 см. Можно ли из этого кольца изготовить квадрат, имеющий площадь: а) 1 кв.см; б) 2 кв.см. Бумагу разрешается склеивать, складывать, но НЕЛЬЗЯ резать.
Прислать комментарий     Решение


Задача 35413

Тема:   [ Пересекающиеся окружности ]
Сложность: 3-
Классы: 8,9,10

На плоскости нарисовано пять различных окружностей. Известно, что каждые четыре из них имеют общую точку.
Докажите, что все пять окружностей проходят через одну точку.

Прислать комментарий     Решение

Задача 35426

Темы:   [ Симметричная стратегия ]
[ Выигрышные и проигрышные позиции ]
Сложность: 3-
Классы: 7,8,9

Шахматный король стоит в левом нижнем углу шахматной доски. Участвуют два игрока, которые ходят по очереди. За один ход его можно передвинуть на одно поле вправо, на одно поле вверх или на одно поле по диагонали "вправо-вверх". Выигрывает игрок, который поставит короля в правый верхний угол доски. Кто из игроков выигрывает при правильной игре?
Прислать комментарий     Решение


Задача 35430

Темы:   [ Теория игр (прочее) ]
[ Четность и нечетность ]
Сложность: 3-
Классы: 7,8

Дана клетчатая доска размером  а) 10×12;  б) 9×10;  в) 9×11. За ход разрешается вычеркнуть любую строку или любой столбец, если там есть хотя бы одна не вычеркнутая клетка. Проигрывает тот, кто не может сделать ход. Есть ли у кого-нибудь выигрышная стратегия?

Прислать комментарий     Решение

Страница: << 107 108 109 110 111 112 113 >> [Всего задач: 7526]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .