ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В прямоугольном треугольнике точка касания вписанной окружности делит гипотенузу на отрезки, равные 5 и 12. Найдите катеты треугольника.

   Решение

Задачи

Страница: << 112 113 114 115 116 117 118 >> [Всего задач: 6702]      



Задача 52643

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Вписанные и описанные окружности ]
[ Площадь треугольника (через высоту и основание) ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
Сложность: 3
Классы: 8,9

В прямоугольном треугольнике точка касания вписанной окружности делит гипотенузу на отрезки, равные 5 и 12. Найдите катеты треугольника.

Прислать комментарий     Решение

Задача 52658

Темы:   [ Вписанная, описанная и вневписанная окружности; их радиусы ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9

Стороны треугольника относятся как  5 : 4 : 3.  Найдите отношения отрезков сторон, на которые они делятся точками касания с вписанной окружностью.

Прислать комментарий     Решение

Задача 52667

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Площадь трапеции ]
Сложность: 3
Классы: 8,9

Площадь равнобедренной трапеции, описанной около окружности, равна S, а высота трапеции в два раза меньше её боковой стороны.
Найдите радиус окружности.

Прислать комментарий     Решение

Задача 52668

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Площадь круга, сектора и сегмента ]
Сложность: 3
Классы: 8,9

В равнобедренную трапецию вписана окружность.
Докажите, что отношение площади трапеции к площади круга равно отношению периметра трапеции к длине окружности.

Прислать комментарий     Решение

Задача 52671

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Площадь трапеции ]
[ Две касательные, проведенные из одной точки ]
[ Симметрия помогает решить задачу ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Формулы для площади треугольника ]
Сложность: 3
Классы: 8,9

Около окружности радиуса R описана равнобедренная трапеция ABCD. E и K – точки касания этой окружности с боковыми сторонами трапеции. Угол между основанием AB и боковой стороной AD трапеции равен 60°. Докажите, что  EK || AB  и найдите площадь трапеции ABKE.

Прислать комментарий     Решение

Страница: << 112 113 114 115 116 117 118 >> [Всего задач: 6702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .